Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Blood ; 144(2): 156-170, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38684032

RESUMEN

ABSTRACT: Hematopoietic stem cells (HSCs) are characterized by the ability to self-renew and to replenish the hematopoietic system. The cell-cycle kinase cyclin-dependent kinase 6 (CDK6) regulates transcription, whereby it has both kinase-dependent and kinase-independent functions. Herein, we describe the complex role of CDK6, balancing quiescence, proliferation, self-renewal, and differentiation in activated HSCs. Mouse HSCs expressing kinase-inactivated CDK6 show enhanced long-term repopulation and homing, whereas HSCs lacking CDK6 have impaired functionality. The transcriptomes of basal and serially transplanted HSCs expressing kinase-inactivated CDK6 exhibit an expression pattern dominated by HSC quiescence and self-renewal, supporting a concept, in which myc-associated zinc finger protein (MAZ) and nuclear transcription factor Y subunit alpha (NFY-A) are critical CDK6 interactors. Pharmacologic kinase inhibition with a clinically used CDK4/6 inhibitor in murine and human HSCs validated our findings and resulted in increased repopulation capability and enhanced stemness. Our findings highlight a kinase-independent role of CDK6 in long-term HSC functionality. CDK6 kinase inhibition represents a possible strategy to improve HSC fitness.


Asunto(s)
Quinasa 6 Dependiente de la Ciclina , Células Madre Hematopoyéticas , Quinasa 6 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/genética , Animales , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Ratones , Humanos , Células Madre Adultas/metabolismo , Células Madre Adultas/citología , Proliferación Celular , Diferenciación Celular , Ratones Endogámicos C57BL , Trasplante de Células Madre Hematopoyéticas , Autorrenovación de las Células/efectos de los fármacos
2.
Genome Biol Evol ; 15(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37515591

RESUMEN

Evolution experiments with free-living microbes have radically improved our understanding of genome evolution and how microorganisms adapt. Yet there is a paucity of such research focusing on strictly host-associated bacteria, even though they are widespread in nature. Here, we used the Acanthamoeba symbiont Protochlamydia amoebophila, a distant relative of the human pathogen Chlamydia trachomatis and representative of a large group of protist-associated environmental chlamydiae, as a model to study how obligate intracellular symbionts evolve and adapt to elevated temperature, a prerequisite for the pivotal evolutionary leap from protist to endothermic animal hosts. We established 12 replicate populations under two temperatures (20 °C, 30 °C) for 510 bacterial generations (38 months). We then used infectivity assays and pooled whole-genome resequencing to identify any evolved phenotypes and the molecular basis of adaptation in these bacteria. We observed an overall reduction in infectivity of the symbionts evolved at 30 °C, and we identified numerous nonsynonymous mutations and small indels in these symbiont populations, with several variants persisting throughout multiple time points and reaching high frequencies. This suggests that many mutations may have been beneficial and played an adaptive role. Mutated genes within the same temperature regime were more similar than those between temperature regimes. Our results provide insights into the molecular evolution of intracellular bacteria under the constraints of strict host dependance and highly structured populations and suggest that for chlamydial symbionts of protists, temperature adaptation was facilitated through attenuation of symbiont infectivity as a tradeoff to reduce host cell burden.


Asunto(s)
Acanthamoeba , Chlamydia , Animales , Humanos , Temperatura , Bacterias/genética , Acanthamoeba/microbiología , Chlamydia/genética , Evolución Molecular , Genoma Bacteriano , Simbiosis/genética
3.
Cancers (Basel) ; 14(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35326705

RESUMEN

Cyclin-dependent kinase 6 (CDK6) represents a novel therapeutic target for the treatment of certain subtypes of acute myeloid leukaemia (AML). CDK4/6 kinase inhibitors have been widely studied in many cancer types and their effects may be limited by primary and secondary resistance mechanisms. CDK4/6 degraders, which eliminate kinase-dependent and kinase-independent effects, have been suggested as an alternative therapeutic option. We show that the efficacy of the CDK6-specific protein degrader BSJ-03-123 varies among AML subtypes and depends on the low expression of the INK4 proteins p16INK4A and p18INK4C. INK4 protein levels are significantly elevated in KMT2A-MLLT3+ cells compared to RUNX1-RUNX1T1+ cells, contributing to the different CDK6 degradation efficacy. We demonstrate that CDK6 complexes containing p16INK4A or p18INK4C are protected from BSJ-mediated degradation and that INK4 levels define the proliferative response to CDK6 degradation. These findings define INK4 proteins as predictive markers for CDK6 degradation-targeted therapies in AML.

4.
Blood Adv ; 5(1): 39-53, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33570624

RESUMEN

Studies of molecular mechanisms of hematopoiesis and leukemogenesis are hampered by the unavailability of progenitor cell lines that accurately mimic the situation in vivo. We now report a robust method to generate and maintain LSK (Lin-, Sca-1+, c-Kit+) cells, which closely resemble MPP1 cells. HPCLSKs reconstitute hematopoiesis in lethally irradiated recipient mice over >8 months. Upon transformation with different oncogenes including BCR/ABL, FLT3-ITD, or MLL-AF9, their leukemic counterparts maintain stem cell properties in vitro and recapitulate leukemia formation in vivo. The method to generate HPCLSKs can be applied to transgenic mice, and we illustrate it for CDK6-deficient animals. Upon BCR/ABLp210 transformation, HPCLSKsCdk6-/- induce disease with a significantly enhanced latency and reduced incidence, showing the importance of CDK6 in leukemia formation. Studies of the CDK6 transcriptome in murine HPCLSK and human BCR/ABL+ cells have verified that certain pathways depend on CDK6 and have uncovered a novel CDK6-dependent signature, suggesting a role for CDK6 in leukemic progenitor cell homing. Loss of CDK6 may thus lead to a defect in homing. The HPCLSK system represents a unique tool for combined in vitro and in vivo studies and enables the production of large quantities of genetically modifiable hematopoietic or leukemic stem/progenitor cells.


Asunto(s)
Proteínas de Fusión bcr-abl , Células Madre Hematopoyéticas , Animales , Hematopoyesis , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
5.
iScience ; 23(10): 101602, 2020 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-33205015

RESUMEN

CDK6 is frequently overexpressed in various cancer types and functions as a positive regulator of the cell cycle and as a coregulator of gene transcription. We provide evidence that CDK6 is involved in the process of DNA methylation, at least in ALL. We observe a positive correlation of CDK6 and DNMT expression in a large number of ALL samples. ChIP-seq analysis reveals CDK6 binding to genomic regions associated with DNA methyltransferases (DNMTs). ATAC-seq shows a strong reduction in chromatin accessibility for DNMT3B in CDK6-deficient BCR-ABL + Cdk6-/- cells, accompanied by lower levels of DNMT3B mRNA and less chromatin-bound DNMT3B, as shown by RNA-seq and chromatome analysis. Motif analysis suggests that ETS family members interact with CDK6 to regulate DNMT3B. Reduced representation bisulfite sequencing analysis uncovers reversible and cell line-specific changes in DNA methylation patterns upon CDK6 loss. The results reveal a function of CDK6 as a regulator of DNA methylation in transformed cells.

6.
Proc Natl Acad Sci U S A ; 117(35): 21658-21666, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817434

RESUMEN

Symbiosis with microbes is a ubiquitous phenomenon with a massive impact on all living organisms, shaping the world around us today. Theoretical and experimental studies show that vertical transmission of symbionts leads to the evolution of mutualistic traits, whereas horizontal transmission facilitates the emergence of parasitic features. However, these studies focused on phenotypic data, and we know little about underlying molecular changes at the genomic level. Here, we combined an experimental evolution approach with infection assays, genome resequencing, and global gene expression analysis to study the effect of transmission mode on an obligate intracellular bacterial symbiont. We show that a dramatic shift in the frequency of genetic variants, coupled with major changes in gene expression, allow the symbiont to alter its position in the parasitism-mutualism continuum depending on the mode of between-host transmission. We found that increased parasitism in horizontally transmitted chlamydiae residing in amoebae was a result of processes occurring at the infectious stage of the symbiont's developmental cycle. Specifically, genes involved in energy production required for extracellular survival and the type III secretion system-the symbiont's primary virulence mechanism-were significantly up-regulated. Our results identify the genomic and transcriptional dynamics sufficient to favor parasitic or mutualistic strategies.


Asunto(s)
Chlamydia/genética , Interacciones Microbiota-Huesped/genética , Simbiosis/genética , Amoeba/metabolismo , Amoeba/microbiología , Animales , Bacterias/genética , Evolución Biológica , Chlamydia/metabolismo , Genoma Bacteriano/genética , Parásitos/genética , Virulencia
7.
Nat Commun ; 10(1): 968, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814504

RESUMEN

Antimicrobial resistance is a serious threat to global public health, but little is known about the effects of microbial control on the microbiota and its associated resistome. Here we compare the microbiota present on surfaces of clinical settings with other built environments. Using state-of-the-art metagenomics approaches and genome and plasmid reconstruction, we show that increased confinement and cleaning is associated with a loss of microbial diversity and a shift from Gram-positive bacteria, such as Actinobacteria and Firmicutes, to Gram-negative such as Proteobacteria. Moreover, the microbiome of highly maintained built environments has a different resistome when compared to other built environments, as well as a higher diversity in resistance genes. Our results highlight that the loss of microbial diversity correlates with an increase in resistance, and the need for implementing strategies to restore bacterial diversity in certain built environments.


Asunto(s)
Entorno Construido , Farmacorresistencia Microbiana , Microbiología Ambiental , Microbiota , Biodiversidad , Farmacorresistencia Microbiana/genética , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/genética , Bacterias Grampositivas/aislamiento & purificación , Humanos , Metagenoma , Microbiota/efectos de los fármacos , Microbiota/genética
8.
Oncotarget ; 10(14): 1346-1359, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30858922

RESUMEN

The cyclin-dependent kinases CDK4 and CDK6 promote progression through the cell cycle, where their functions are considered to be redundant. Recent studies have identified an additional role for CDK6 in the transcriptional regulation of cancer-relevant genes such as VEGF-A and EGR1 in hematopoietic malignancies. We show that the CDK4/6 inhibitor PD0332991 causes a significant decrease in tumor growth in a xenotransplantation mouse model of human melanoma. shRNA knockdown of either CDK4 or CDK6 significantly reduces cell proliferation and impedes their migratory capacity in vitro, which translates into a strong inhibition of tumor growth in xenotransplantation experiments. CDK4/6 inhibition results not only in the pronounced reduction of cell proliferation but also in an impaired tumor angiogenesis. CDK6 knockdown in melanoma cell lines impairs VEGF-A expression and reduces the potential stimulation of endothelial cell growth. The knockdown of CDK4 ends in similar results. The effect is caused by changes of CDK6 localization, less CDK6 is detected on the VEGF-A promoter. Bioinformatic analysis of human melanoma patient data verifies the key role of CDK6 in tumor angiogenesis in melanoma. The results highlight the importance of the delicate balance between CDK4 and CDK6 in regulating the cell cycle and transcription.

9.
Blood ; 133(15): 1677-1690, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30635286

RESUMEN

Over 80% of patients with myeloproliferative neoplasms (MPNs) harbor the acquired somatic JAK2 V617F mutation. JAK inhibition is not curative and fails to induce a persistent response in most patients, illustrating the need for the development of novel therapeutic approaches. We describe a critical role for CDK6 in MPN evolution. The absence of Cdk6 ameliorates clinical symptoms and prolongs survival. The CDK6 protein interferes with 3 hallmarks of disease: besides regulating malignant stem cell quiescence, it promotes nuclear factor κB (NF-κB) signaling and contributes to cytokine production while inhibiting apoptosis. The effects are not mirrored by palbociclib, showing that the functions of CDK6 in MPN pathogenesis are largely kinase independent. Our findings thus provide a rationale for targeting CDK6 in MPN.


Asunto(s)
Apoptosis , Quinasa 6 Dependiente de la Ciclina/farmacología , Janus Quinasa 2/genética , Mutación , Trastornos Mieloproliferativos/etiología , FN-kappa B/metabolismo , Humanos , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/mortalidad , Trastornos Mieloproliferativos/patología , Neoplasias , Transducción de Señal
10.
Int J Mol Sci ; 19(12)2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30544932

RESUMEN

While significant progress has been made in the treatment of acute myeloid leukemia (AML), not all patients can be cured. Mutated in about 1/3 of de novo AML, the FLT3 receptor tyrosine kinase is an attractive target for drug development, activating mutations of the FLT3 map to the juxtamembrane domain (internal tandem duplications, ITD) or the tyrosine kinase domain (TKD), most frequently at codon D835. While small molecule tyrosine kinase inhibitors (TKI) effectively target ITD mutant forms, those on the TKD are not responsive. Moreover, FLT3 inhibition fails to induce a persistent response in patients due to mutational resistance. More potent compounds with broader inhibitory effects on multiple FLT3 mutations are highly desirable. We describe a critical role of CDK6 in the survival of FLT3⁺ AML cells as palbociclib induced apoptosis not only in FLT3⁻ITD⁺ cells but also in FLT3⁻D835Y⁺ cells. Antineoplastic effects were also seen in primary patient-derived cells and in a xenograft model, where therapy effectively suppressed tumor formation in vivo at clinically relevant concentrations. In cells with FLT3⁻ITD or -TKD mutations, the CDK6 protein not only affects cell cycle progression but also transcriptionally regulates oncogenic kinases mediating intrinsic drug resistance, including AURORA and AKT-a feature not shared by its homolog CDK4. While AKT and AURORA kinase inhibitors have significant therapeutic potential in AML, single agent activity has not been proven overly effective. We describe synergistic combination effects when applying these drugs together with palbociclib which could be readily translated to patients with AML bearing FLT3⁻ITD or ⁻TKD mutations. Targeting synergistically acting vulnerabilities, with CDK6 being the common denominator, may represent a promising strategy to improve AML patient responses and to reduce the incidence of selection of resistance-inducing mutations.


Asunto(s)
Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Piperazinas/farmacología , Piridinas/farmacología , Tirosina Quinasa 3 Similar a fms/genética , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Aurora Quinasas/genética , Aurora Quinasas/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Inmunoprecipitación de Cromatina , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Immunoblotting , Ratones , Mutación/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
11.
Cancer Discov ; 8(7): 884-897, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29899063

RESUMEN

Tumor formation is a multistep process during which cells acquire genetic and epigenetic changes until they reach a fully transformed state. We show that CDK6 contributes to tumor formation by regulating transcriptional responses in a stage-specific manner. In early stages, the CDK6 kinase induces a complex transcriptional program to block p53 in hematopoietic cells. Cells lacking CDK6 kinase function are required to mutate TP53 (encoding p53) to achieve a fully transformed immortalized state. CDK6 binds to the promoters of genes including the p53 antagonists Prmt5, Ppm1d, and Mdm4 The findings are relevant to human patients: Tumors with low levels of CDK6 have mutations in TP53 significantly more often than expected.Significance: CDK6 acts at the interface of p53 and RB by driving cell-cycle progression and antagonizing stress responses. While sensitizing cells to p53-induced cell death, specific inhibition of CDK6 kinase activity may provoke the outgrowth of p53-mutant clones from premalignant cells. Cancer Discov; 8(7); 884-97. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 781.


Asunto(s)
Carcinogénesis , Quinasa 6 Dependiente de la Ciclina/metabolismo , Mutación , Neoplasias/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Línea Celular Tumoral , Transformación Celular Neoplásica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Neoplasias/genética
12.
PeerJ ; 5: e2997, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28224054

RESUMEN

Genomic heterogeneity of bacterial species is observed and studied in experimental evolution experiments and clinical diagnostics, and occurs as micro-diversity of natural habitats. The challenge for genome research is to accurately capture this heterogeneity with the currently used short sequencing reads. Recent advances in NGS technologies improved the speed and coverage and thus allowed for deep sequencing of bacterial populations. This facilitates the quantitative assessment of genomic heterogeneity, including low frequency alleles or haplotypes. However, false positive variant predictions due to sequencing errors and mapping artifacts of short reads need to be prevented. We therefore created VarCap, a workflow for the reliable prediction of different types of variants even at low frequencies. In order to predict SNPs, InDels and structural variations, we evaluated the sensitivity and accuracy of different software tools using synthetic read data. The results suggested that the best sensitivity could be reached by a union of different tools, however at the price of increased false positives. We identified possible reasons for false predictions and used this knowledge to improve the accuracy by post-filtering the predicted variants according to properties such as frequency, coverage, genomic environment/localization and co-localization with other variants. We observed that best precision was achieved by using an intersection of at least two tools per variant. This resulted in the reliable prediction of variants above a minimum relative abundance of 2%. VarCap is designed for being routinely used within experimental evolution experiments or for clinical diagnostics. The detected variants are reported as frequencies within a VCF file and as a graphical overview of the distribution of the different variant/allele/haplotype frequencies. The source code of VarCap is available at https://github.com/ma2o/VarCap. In order to provide this workflow to a broad community, we implemeted VarCap on a Galaxy webserver, which is accessible at http://galaxy.csb.univie.ac.at.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...