Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0302129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753705

RESUMEN

Emerging technologies focused on the detection and quantification of circulating tumor DNA (ctDNA) in blood show extensive potential for managing patient treatment decisions, informing risk of recurrence, and predicting response to therapy. Currently available tissue-informed approaches are often limited by the need for additional sequencing of normal tissue or peripheral mononuclear cells to identify non-tumor-derived alterations while tissue-naïve approaches are often limited in sensitivity. Here we present the analytical validation for a novel ctDNA monitoring assay, FoundationOne®Tracker. The assay utilizes somatic alterations from comprehensive genomic profiling (CGP) of tumor tissue. A novel algorithm identifies monitorable alterations with a high probability of being somatic and computationally filters non-tumor-derived alterations such as germline or clonal hematopoiesis variants without the need for sequencing of additional samples. Monitorable alterations identified from tissue CGP are then quantified in blood using a multiplex polymerase chain reaction assay based on the validated SignateraTM assay. The analytical specificity of the plasma workflow is shown to be 99.6% at the sample level. Analytical sensitivity is shown to be >97.3% at ≥5 mean tumor molecules per mL of plasma (MTM/mL) when tested with the most conservative configuration using only two monitorable alterations. The assay also demonstrates high analytical accuracy when compared to liquid biopsy-based CGP as well as high qualitative (measured 100% PPA) and quantitative precision (<11.2% coefficient of variation).


Asunto(s)
ADN Tumoral Circulante , Neoplasias , Humanos , ADN Tumoral Circulante/sangre , ADN Tumoral Circulante/genética , Neoplasias/genética , Neoplasias/sangre , Neoplasias/diagnóstico , Genómica/métodos , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Sensibilidad y Especificidad , Algoritmos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Biopsia Líquida/métodos
2.
Cell Rep ; 42(10): 113212, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37792533

RESUMEN

Local immune activation at mucosal surfaces, mediated by mucosal lymphoid tissues, is vital for effective immune responses against pathogens. While pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can spread to multiple organs, patients with coronavirus disease 2019 (COVID-19) primarily experience inflammation and damage in their lungs. To investigate this apparent organ-specific immune response, we develop an analytical framework that recognizes the significance of mucosal lymphoid tissues. This framework combines histology, immunofluorescence, spatial transcript profiling, and mathematical modeling to identify cellular and gene expression differences between the lymphoid tissues of the lung and the gut and predict the determinants of those differences. Our findings indicate that mucosal lymphoid tissues are pivotal in organ-specific immune response to SARS-CoV-2, mediating local inflammation and tissue damage and contributing to immune dysfunction. The framework developed here has potential utility in the study of long COVID and may streamline biomarker discovery and treatment design for diseases with differential pathologies at the organ level.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Síndrome Post Agudo de COVID-19 , Inflamación , Inmunidad
3.
Front Oncol ; 13: 1221718, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601688

RESUMEN

Introduction: Circulating tumor DNA (ctDNA) detection postoperatively may identify patients with urothelial cancer at a high risk of relapse. Pragmatic tools building off clinical tumor next-generation sequencing (NGS) platforms could have the potential to increase assay accessibility. Methods: We evaluated the widely available Foundation Medicine comprehensive genomic profiling (CGP) platform as a source of variants for tracking of ctDNA when analyzing residual samples from IMvigor010 (ClinicalTrials.gov identifier NCT02450331), a randomized adjuvant study comparing atezolizumab with observation after bladder cancer surgery. Current methods often involve germline sampling, which is not always feasible or practical. Rather than performing white blood cell sequencing to filter germline and clonal hematopoiesis (CH) variants, we applied a bioinformatic approach to select tumor (non-germline/CH) variants for molecular residual disease detection. Tissue-informed personalized multiplex polymerase chain reaction-NGS assay was used to detect ctDNA postsurgically (Natera). Results: Across 396 analyzed patients, prevalence of potentially actionable alterations was comparable with the expected prevalence in advanced disease (13% FGFR2/3, 20% PIK3CA, 13% ERBB2, and 37% with elevated tumor mutational burden ≥10 mutations/megabase). In the observation arm, 66 of the 184 (36%) ctDNA-positive patients had shorter disease-free survival [DFS; hazard ratio (HR) = 5.77; 95% confidence interval (CI), 3.84-8.67; P < 0.0001] and overall survival (OS; HR = 5.81; 95% CI, 3.41-9.91; P < 0.0001) compared with ctDNA-negative patients. ctDNA-positive patients had improved DFS and OS with atezolizumab compared with those in observation (DFS HR = 0.56; 95% CI, 0.38-0.83; P = 0.003; OS HR = 0.66; 95% CI, 0.42-1.05). Clinical sensitivity and specificity for detection of postsurgical recurrence were 58% (60/103) and 93% (75/81), respectively. Conclusion: We present a personalized ctDNA monitoring assay utilizing tissue-based FoundationOne® CDx CGP, which is a pragmatic and potentially clinically scalable method that can detect low levels of residual ctDNA in patients with resected, muscle-invasive bladder cancer without germline sampling.

4.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232827

RESUMEN

A majority of patients with metastatic colorectal cancer (mCRC) experience recurrence post curative-intent surgery. The addition of adjuvant chemotherapy has shown to provide limited survival benefits when applied to all patients. Therefore, a biomarker to assess molecular residual disease (MRD) accurately and guide treatment selection is highly desirable for high-risk patients. This feasibility study evaluated the prognostic value of a tissue comprehensive genomic profiling (CGP)-informed, personalized circulating tumor DNA (ctDNA) assay (FoundationOne®Tracker) (Foundation Medicine, Inc., Cambridge, MA, USA) by correlating MRD status with clinical outcomes. ctDNA analysis was performed retrospectively on plasma samples from 69 patients with resected mCRC obtained at the MRD and the follow-up time point. Tissue CGP identified potentially actionable alterations in 54% (37/69) of patients. MRD-positivity was significantly associated with lower disease-free survival (DFS) (HR: 4.97, 95% CI: 2.67−9.24, p < 0.0001) and overall survival (OS) (HR: 27.05, 95% CI: 3.60−203.46, p < 0.0001). Similarly, ctDNA positive status at the follow-up time point correlated with a marked reduction in DFS (HR: 8.78, 95% CI: 3.59−21.49, p < 0.0001) and OS (HR: 20.06, 95% CI: 2.51−160.25, p < 0.0001). The overall sensitivity and specificity at the follow-up time point were 69% and 100%, respectively. Our results indicate that MRD detection using the tissue CGP-informed ctDNA assay is prognostic of survival outcomes in patients with resected mCRC. The concurrent MRD detection and identification of actionable alterations has the potential to guide perioperative clinical decision-making.


Asunto(s)
ADN Tumoral Circulante , Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias del Recto , Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/cirugía , Progresión de la Enfermedad , Genómica , Humanos , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Neoplasia Residual/patología , Estudios Retrospectivos
5.
Genome Res ; 32(10): 1892-1905, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36100434

RESUMEN

Emerging spatial profiling technology has enabled high-plex molecular profiling in biological tissues, preserving the spatial and morphological context of gene expression. Here, we describe expanding the chemistry for the Digital Spatial Profiling platform to quantify whole transcriptomes in human and mouse tissues using a wide range of spatial profiling strategies and sample types. We designed multiplexed in situ hybridization probes targeting the protein-coding genes of the human and mouse transcriptomes, referred to as the human or mouse Whole Transcriptome Atlas (WTA). Human and mouse WTAs were validated in cell lines for concordance with orthogonal gene expression profiling methods in regions ranging from ∼10-500 cells. By benchmarking against bulk RNA-seq and fluorescence in situ hybridization, we show robust transcript detection down to ∼100 transcripts per region. To assess the performance of WTA across tissue and sample types, we applied WTA to biological questions in cancer, molecular pathology, and developmental biology. Spatial profiling with WTA detected expected gene expression differences between tumor and tumor microenvironment, identified disease-specific gene expression heterogeneity in histological structures of the human kidney, and comprehensively mapped transcriptional programs in anatomical substructures of nine organs in the developing mouse embryo. Digital Spatial Profiling technology with the WTA assays provides a flexible method for spatial whole transcriptome profiling applicable to diverse tissue types and biological contexts.


Asunto(s)
Perfilación de la Expresión Génica , Neoplasias , Humanos , Animales , Ratones , Hibridación Fluorescente in Situ/métodos , Perfilación de la Expresión Génica/métodos , Transcriptoma , Microambiente Tumoral
6.
Cell ; 185(18): 3408-3425.e29, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35985322

RESUMEN

Genetically encoded voltage indicators are emerging tools for monitoring voltage dynamics with cell-type specificity. However, current indicators enable a narrow range of applications due to poor performance under two-photon microscopy, a method of choice for deep-tissue recording. To improve indicators, we developed a multiparameter high-throughput platform to optimize voltage indicators for two-photon microscopy. Using this system, we identified JEDI-2P, an indicator that is faster, brighter, and more sensitive and photostable than its predecessors. We demonstrate that JEDI-2P can report light-evoked responses in axonal termini of Drosophila interneurons and the dendrites and somata of amacrine cells of isolated mouse retina. JEDI-2P can also optically record the voltage dynamics of individual cortical neurons in awake behaving mice for more than 30 min using both resonant-scanning and ULoVE random-access microscopy. Finally, ULoVE recording of JEDI-2P can robustly detect spikes at depths exceeding 400 µm and report voltage correlations in pairs of neurons.


Asunto(s)
Microscopía , Neuronas , Animales , Interneuronas , Ratones , Microscopía/métodos , Neuronas/fisiología , Fotones , Vigilia
7.
Nat Genet ; 54(8): 1178-1191, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35902743

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal and treatment-refractory cancer. Molecular stratification in pancreatic cancer remains rudimentary and does not yet inform clinical management or therapeutic development. Here, we construct a high-resolution molecular landscape of the cellular subtypes and spatial communities that compose PDAC using single-nucleus RNA sequencing and whole-transcriptome digital spatial profiling (DSP) of 43 primary PDAC tumor specimens that either received neoadjuvant therapy or were treatment naive. We uncovered recurrent expression programs across malignant cells and fibroblasts, including a newly identified neural-like progenitor malignant cell program that was enriched after chemotherapy and radiotherapy and associated with poor prognosis in independent cohorts. Integrating spatial and cellular profiles revealed three multicellular communities with distinct contributions from malignant, fibroblast and immune subtypes: classical, squamoid-basaloid and treatment enriched. Our refined molecular and cellular taxonomy can provide a framework for stratification in clinical trials and serve as a roadmap for therapeutic targeting of specific cellular phenotypes and multicellular interactions.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Biomarcadores de Tumor/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/terapia , Perfilación de la Expresión Génica , Humanos , Terapia Neoadyuvante , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Pronóstico , Transcriptoma/genética , Neoplasias Pancreáticas
8.
Cell ; 184(18): 4734-4752.e20, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34450029

RESUMEN

Immune responses to cancer are highly variable, with mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. To understand the rules governing these varied responses, we transcriptionally profiled 371,223 cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd individuals. Analysis of 88 cell subsets and their 204 associated gene expression programs revealed extensive transcriptional and spatial remodeling across tumors. To discover hubs of interacting malignant and immune cells, we identified expression programs in different cell types that co-varied across tumors from affected individuals and used spatial profiling to localize coordinated programs. We discovered a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage and an MMRd-enriched immune hub within the tumor, with activated T cells together with malignant and myeloid cells expressing T cell-attracting chemokines. By identifying interacting cellular programs, we reveal the logic underlying spatially organized immune-malignant cell networks.


Asunto(s)
Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Proteínas Morfogenéticas Óseas/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Compartimento Celular , Línea Celular Tumoral , Quimiocinas/metabolismo , Estudios de Cohortes , Neoplasias Colorrectales/genética , Reparación de la Incompatibilidad de ADN/genética , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunidad , Inflamación/patología , Monocitos/patología , Células Mieloides/patología , Neutrófilos/patología , Células del Estroma/metabolismo , Linfocitos T/metabolismo , Transcripción Genética
9.
Nat Med ; 27(2): 289-300, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33495604

RESUMEN

Synovial sarcoma (SyS) is an aggressive neoplasm driven by the SS18-SSX fusion, and is characterized by low T cell infiltration. Here, we studied the cancer-immune interplay in SyS using an integrative approach that combines single-cell RNA sequencing (scRNA-seq), spatial profiling and genetic and pharmacological perturbations. scRNA-seq of 16,872 cells from 12 human SyS tumors uncovered a malignant subpopulation that marks immune-deprived niches in situ and is predictive of poor clinical outcomes in two independent cohorts. Functional analyses revealed that this malignant cell state is controlled by the SS18-SSX fusion, is repressed by cytokines secreted by macrophages and T cells, and can be synergistically targeted with a combination of HDAC and CDK4/CDK6 inhibitors. This drug combination enhanced malignant-cell immunogenicity in SyS models, leading to induced T cell reactivity and T cell-mediated killing. Our study provides a blueprint for investigating heterogeneity in fusion-driven malignancies and demonstrates an interplay between immune evasion and oncogenic processes that can be co-targeted in SyS and potentially in other malignancies.


Asunto(s)
Carcinogénesis/genética , Terapia Molecular Dirigida , Proteínas de Fusión Oncogénica/genética , Sarcoma Sinovial/tratamiento farmacológico , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/genética , Histona Desacetilasas/uso terapéutico , Humanos , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Oncogenes/genética , RNA-Seq , Sarcoma Sinovial/genética , Sarcoma Sinovial/patología , Análisis de la Célula Individual
10.
Methods Mol Biol ; 2148: 331-345, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32394392

RESUMEN

RNA in situ hybridization (ISH) is a widely used technique for the localization of mRNA in tissues. Limitations to traditional ISH include the number of targets that can be analyzed concurrently and the ability for many of these assays to be used in formalin-fixed, paraffin-embedded tissues (FFPE). Here, we describe the GeoMx™ RNA assay that is capable of the highly multiplexed detection of mRNA targets in FFPE tissues. This assay utilizes ISH probes linked to indexing oligo barcodes via a photocleavable linker and the GeoMx Digital Spatial Profiler (DSP) Instrument to enable profiling of RNA targets in a region-of-interest-based method. In brief, 5 µm FFPE sections are dewaxed, target retrieved, digested with proteinase K, post-fixed, and then incubated overnight with GeoMx RNA detection probes. Stringent washes are performed followed by the addition of fluorescently labeled antibodies for use as morphology markers. User-defined regions of interest are then profiled on the GeoMx DSP through region-specific cleaving and collecting the photocleaved indexing oligos. Cleaved indices are then quantified using NanoString nCounter® Technology generating digital quantification of RNA expression with spatial context.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Hibridación in Situ/métodos , ARN/genética , Humanos , Adhesión en Parafina/métodos , ARN/aislamiento & purificación , Análisis Espacial , Fijación del Tejido/métodos
11.
Nat Biotechnol ; 38(5): 586-599, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32393914

RESUMEN

Digital Spatial Profiling (DSP) is a method for highly multiplex spatial profiling of proteins or RNAs suitable for use on formalin-fixed, paraffin-embedded (FFPE) samples. The approach relies on (1) multiplexed readout of proteins or RNAs using oligonucleotide tags; (2) oligonucleotide tags attached to affinity reagents (antibodies or RNA probes) through a photocleavable (PC) linker; and (3) photocleaving light projected onto the tissue sample to release PC oligonucleotides in any spatial pattern across a region of interest (ROI) covering 1 to ~5,000 cells. DSP is capable of single-cell sensitivity within an ROI using the antibody readout, with RNA detection feasible down to ~600 individual mRNA transcripts. We show spatial profiling of up to 44 proteins and 96 genes (928 RNA probes) in lymphoid, colorectal tumor and autoimmune tissues by using the nCounter system and 1,412 genes (4,998 RNA probes) by using next-generation sequencing (NGS). DSP may be used to profile not only proteins and RNAs in biobanked samples but also immune markers in patient samples, with potential prognostic and predictive potential for clinical decision-making.


Asunto(s)
Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Proteómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ARN , Programas Informáticos , Análisis Espacial , Fijación del Tejido
12.
J Neurosci ; 38(27): 6063-6075, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-29853631

RESUMEN

Action potential conduction along myelinated axons depends on high densities of voltage-gated Na+ channels at the nodes of Ranvier. Flanking each node, paranodal junctions (paranodes) are formed between axons and Schwann cells in the peripheral nervous system (PNS) or oligodendrocytes in the CNS. Paranodal junctions contribute to both node assembly and maintenance. Despite their importance, the molecular mechanisms responsible for paranode assembly and maintenance remain poorly understood. ßII spectrin is expressed in diverse cells and is an essential part of the submembranous cytoskeleton. Here, we show that Schwann cell ßII spectrin is highly enriched at paranodes. To elucidate the roles of glial ßII spectrin, we generated mutant mice lacking ßII spectrin in myelinating glial cells by crossing mice with a floxed allele of Sptbn1 with Cnp-Cre mice, and analyzed both male and female mice. Juvenile (4 weeks) and middle-aged (60 weeks) mutant mice showed reduced grip strength and sciatic nerve conduction slowing, whereas no phenotype was observed between 8 and 24 weeks of age. Consistent with these findings, immunofluorescence microscopy revealed disorganized paranodes in the PNS and CNS of both postnatal day 13 and middle-aged mutant mice, but not in young adult mutant mice. Electron microscopy confirmed partial loss of transverse bands at the paranodal axoglial junction in the middle-aged mutant mice in both the PNS and CNS. These findings demonstrate that a spectrin-based cytoskeleton in myelinating glia contributes to formation and maintenance of paranodal junctions.SIGNIFICANCE STATEMENT Myelinating glia form paranodal axoglial junctions that flank both sides of the nodes of Ranvier. These junctions contribute to node formation and maintenance and are essential for proper nervous system function. We found that a submembranous spectrin cytoskeleton is highly enriched at paranodes in Schwann cells. Ablation of ßII spectrin in myelinating glial cells disrupted the paranodal cell adhesion complex in both peripheral and CNSs, resulting in muscle weakness and sciatic nerve conduction slowing in juvenile and middle-aged mice. Our data show that a spectrin-based submembranous cytoskeleton in myelinating glia plays important roles in paranode formation and maintenance.


Asunto(s)
Axones/metabolismo , Citoesqueleto/metabolismo , Neuroglía/metabolismo , Espectrina/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Nódulos de Ranvier
13.
Brain ; 141(1): 85-98, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29244098

RESUMEN

Hypoxia can injure brain white matter tracts, comprised of axons and myelinating oligodendrocytes, leading to cerebral palsy in neonates and delayed post-hypoxic leukoencephalopathy (DPHL) in adults. In these conditions, white matter injury can be followed by myelin regeneration, but myelination often fails and is a significant contributor to fixed demyelinated lesions, with ensuing permanent neurological injury. Non-myelinating oligodendrocyte precursor cells are often found in lesions in plentiful numbers, but fail to mature, suggesting oligodendrocyte precursor cell differentiation arrest as a critical contributor to failed myelination in hypoxia. We report a case of an adult patient who developed the rare condition DPHL and made a nearly complete recovery in the setting of treatment with clemastine, a widely available antihistamine that in preclinical models promotes oligodendrocyte precursor cell differentiation. This suggested possible therapeutic benefit in the more clinically prevalent hypoxic injury of newborns, and we demonstrate in murine neonatal hypoxic injury that clemastine dramatically promotes oligodendrocyte precursor cell differentiation, myelination, and improves functional recovery. We show that its effect in hypoxia is oligodendroglial specific via an effect on the M1 muscarinic receptor on oligodendrocyte precursor cells. We propose clemastine as a potential therapy for hypoxic brain injuries associated with white matter injury and oligodendrocyte precursor cell maturation arrest.


Asunto(s)
Clemastina/uso terapéutico , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/etiología , Antagonistas de los Receptores Histamínicos H1/uso terapéutico , Hipoxia Encefálica/complicaciones , Recuperación de la Función/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cerebelo/ultraestructura , Enfermedades Desmielinizantes/diagnóstico por imagen , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Hipoxia Encefálica/diagnóstico por imagen , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/ultraestructura , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Nervio Óptico/fisiopatología , Oxígeno/farmacología , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo
14.
J Neurosci ; 37(47): 11323-11334, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29038243

RESUMEN

Axons must withstand mechanical forces, including tension, torsion, and compression. Spectrins and actin form a periodic cytoskeleton proposed to protect axons against these forces. However, because spectrins also participate in assembly of axon initial segments (AISs) and nodes of Ranvier, it is difficult to uncouple their roles in maintaining axon integrity from their functions at AIS and nodes. To overcome this problem and to determine the importance of spectrin cytoskeletons for axon integrity, we generated mice with αII spectrin-deficient peripheral sensory neurons. The axons of these neurons are very long and exposed to the mechanical forces associated with limb movement; most lack an AIS, and some are unmyelinated and have no nodes. We analyzed αII spectrin-deficient mice of both sexes and found that, in myelinated axons, αII spectrin forms a periodic cytoskeleton with ßIV and ßII spectrin at nodes of Ranvier and paranodes, respectively, but that loss of αII spectrin disrupts this organization. Avil-cre;Sptan1f/f mice have reduced numbers of nodes, disrupted paranodal junctions, and mislocalized Kv1 K+ channels. We show that the density of nodal ßIV spectrin is constant among axons, but the density of nodal αII spectrin increases with axon diameter. Remarkably, Avil-cre;Sptan1f/f mice have intact nociception and small-diameter axons, but severe ataxia due to preferential degeneration of large-diameter myelinated axons. Our results suggest that nodal αII spectrin helps resist the mechanical forces experienced by large-diameter axons, and that αII spectrin-dependent cytoskeletons are also required for assembly of nodes of Ranvier.SIGNIFICANCE STATEMENT A periodic axonal cytoskeleton consisting of actin and spectrin has been proposed to help axons resist the mechanical forces to which they are exposed (e.g., compression, torsion, and stretch). However, until now, no vertebrate animal model has tested the requirement of the spectrin cytoskeleton in maintenance of axon integrity. We demonstrate the role of the periodic spectrin-dependent cytoskeleton in axons and show that loss of αII spectrin from PNS axons causes preferential degeneration of large-diameter myelinated axons. We show that nodal αII spectrin is found at greater densities in large-diameter myelinated axons, suggesting that nodes are particularly vulnerable domains requiring a specialized cytoskeleton to protect against axon degeneration.


Asunto(s)
Axones/metabolismo , Citoesqueleto/metabolismo , Enfermedades Desmielinizantes/metabolismo , Nódulos de Ranvier/metabolismo , Espectrina/metabolismo , Animales , Axones/patología , Axones/fisiología , Enfermedades Desmielinizantes/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Nódulos de Ranvier/patología , Nódulos de Ranvier/fisiología , Espectrina/genética
15.
Elife ; 62017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134616

RESUMEN

A high density of Na+ channels at nodes of Ranvier is necessary for rapid and efficient action potential propagation in myelinated axons. Na+ channel clustering is thought to depend on two axonal cell adhesion molecules that mediate interactions between the axon and myelinating glia at the nodal gap (i.e., NF186) and the paranodal junction (i.e., Caspr). Here we show that while Na+ channels cluster at nodes in the absence of NF186, they fail to do so in double conditional knockout mice lacking both NF186 and the paranodal cell adhesion molecule Caspr, demonstrating that a paranodal junction-dependent mechanism can cluster Na+ channels at nodes. Furthermore, we show that paranode-dependent clustering of nodal Na+ channels requires axonal ßII spectrin which is concentrated at paranodes. Our results reveal that the paranodal junction-dependent mechanism of Na+channel clustering is mediated by the spectrin-based paranodal axonal cytoskeleton.


Asunto(s)
Citoesqueleto/metabolismo , Nódulos de Ranvier/química , Canales de Sodio/análisis , Animales , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Ratones Noqueados
16.
Annu Rev Cell Dev Biol ; 31: 647-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26566119

RESUMEN

Myelinated axons are divided into polarized subdomains including axon initial segments and nodes of Ranvier. These domains initiate and propagate action potentials and regulate the trafficking and localization of somatodendritic and axonal proteins. Formation of axon initial segments and nodes of Ranvier depends on intrinsic (neuronal) and extrinsic (glial) interactions. Several levels of redundancy in both mechanisms and molecules also exist to ensure efficient node formation. Furthermore, the establishment of polarized domains at and near nodes of Ranvier reflects the intrinsic polarity of the myelinating glia responsible for node assembly. Here, we discuss the various polarized domains of myelinated axons, how they are established by both intrinsic and extrinsic interactions, and the polarity of myelinating glia.


Asunto(s)
Axones/fisiología , Polaridad Celular/fisiología , Potenciales de Acción/fisiología , Animales , Humanos , Vaina de Mielina/fisiología , Neuroglía/fisiología , Neuronas/fisiología
17.
J Neurosci ; 35(29): 10474-84, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26203142

RESUMEN

Myelin is essential for rapid and efficient action potential propagation in vertebrates. However, the molecular mechanisms regulating myelination remain incompletely characterized. For example, even before myelination begins in the PNS, Schwann cells must radially sort axons to form 1:1 associations. Schwann cells then ensheathe and wrap axons, and establish polarized, subcellular domains, including apical and basolateral domains, paranodes, and Schmidt-Lanterman incisures. Intriguingly, polarity proteins, such as Pals1/Mpp5, are highly enriched in some of these domains, suggesting that they may regulate the polarity of Schwann cells and myelination. To test this, we generated mice with Schwann cells and oligodendrocytes that lack Pals1. During early development of the PNS, Pals1-deficient mice had impaired radial sorting of axons, delayed myelination, and reduced nerve conduction velocities. Although myelination and conduction velocities eventually recovered, polyaxonal myelination remained a prominent feature of adult Pals1-deficient nerves. Despite the enrichment of Pals1 at paranodes and incisures of control mice, nodes of Ranvier and paranodes were unaffected in Pals1-deficient mice, although we measured a significant increase in the number of incisures. As in other polarized cells, we found that Pals1 interacts with Par3 and loss of Pals1 reduced levels of Par3 in Schwann cells. In the CNS, loss of Pals1 affected neither myelination nor the establishment of polarized membrane domains. These results demonstrate that Schwann cells and oligodendrocytes use distinct mechanisms to control their polarity, and that radial sorting in the PNS is a key polarization event that requires Pals1. Significance statement: This paper reveals the role of the canonical polarity protein Pals1 in radial sorting of axons by Schwann cells. Radial sorting is essential for efficient and proper myelination and is disrupted in some types of congenital muscular dystrophy.


Asunto(s)
Axones/metabolismo , Polaridad Celular/fisiología , Proteínas de la Membrana/metabolismo , Neurogénesis/fisiología , Nucleósido-Fosfato Quinasa/metabolismo , Células de Schwann/metabolismo , Animales , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Ratones , Ratones Mutantes , Microscopía Electrónica de Transmisión , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
18.
J Neurosci ; 35(18): 7082-94, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-25948259

RESUMEN

In myelinated axons, K(+) channels are clustered in distinct membrane domains to regulate action potentials (APs). At nodes of Ranvier, Kv7 channels are expressed with Na(+) channels, whereas Kv1 channels flank nodes at juxtaparanodes. Regulation of axonal APs by K(+) channels would be particularly important in fast-spiking projection neurons such as cerebellar Purkinje cells. Here, we show that BK/Slo1 channels are clustered at the paranodal junctions of myelinated Purkinje cell axons of rat and mouse. The paranodal junction is formed by a set of cell-adhesion molecules, including Caspr, between the node and juxtaparanodes in which it separates nodal from internodal membrane domains. Remarkably, only Purkinje cell axons have detectable paranodal BK channels, whose clustering requires the formation of the paranodal junction via Caspr. Thus, BK channels occupy this unique domain in Purkinje cell axons along with the other K(+) channel complexes at nodes and juxtaparanodes. To investigate the physiological role of novel paranodal BK channels, we examined the effect of BK channel blockers on antidromic AP conduction. We found that local application of blockers to the axon resulted in a significant increase in antidromic AP failure at frequencies above 100 Hz. We also found that Ni(2+) elicited a similar effect on APs, indicating the involvement of Ni(2+)-sensitive Ca(2+) channels. Furthermore, axonal application of BK channel blockers decreased the inhibitory synaptic response in the deep cerebellar nuclei. Thus, paranodal BK channels uniquely support high-fidelity firing of APs in myelinated Purkinje cell axons, thereby underpinning the output of the cerebellar cortex.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Fibras Nerviosas Mielínicas/fisiología , Células de Purkinje/fisiología , Nódulos de Ranvier/fisiología , Animales , Femenino , Uniones Intercelulares/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Ratas , Ratas Sprague-Dawley
19.
Nat Neurosci ; 17(12): 1673-81, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25362471

RESUMEN

Neuron-glia interactions establish functional membrane domains along myelinated axons. These include nodes of Ranvier, paranodal axoglial junctions and juxtaparanodes. Paranodal junctions are the largest vertebrate junctional adhesion complex, and they are essential for rapid saltatory conduction and contribute to assembly and maintenance of nodes. However, the molecular mechanisms underlying paranodal junction assembly are poorly understood. Ankyrins are cytoskeletal scaffolds traditionally associated with Na(+) channel clustering in neurons and are important for membrane domain establishment and maintenance in many cell types. Here we show that ankyrin-B, expressed by Schwann cells, and ankyrin-G, expressed by oligodendrocytes, are highly enriched at the glial side of paranodal junctions where they interact with the essential glial junctional component neurofascin 155. Conditional knockout of ankyrins in oligodendrocytes disrupts paranodal junction assembly and delays nerve conduction during early development in mice. Thus, glial ankyrins function as major scaffolds that facilitate early and efficient paranodal junction assembly in the developing CNS.


Asunto(s)
Ancirinas/biosíntesis , Axones/metabolismo , Neuroglía/metabolismo , Oligodendroglía/metabolismo , Animales , Ancirinas/análisis , Ancirinas/genética , Axones/química , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroglía/química , Oligodendroglía/química , Ratas Sprague-Dawley
20.
Nat Neurosci ; 17(12): 1664-72, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25362473

RESUMEN

The scaffolding protein ankyrin-G is required for Na(+) channel clustering at axon initial segments. It is also considered essential for Na(+) channel clustering at nodes of Ranvier to facilitate fast and efficient action potential propagation. However, notwithstanding these widely accepted roles, we show here that ankyrin-G is dispensable for nodal Na(+) channel clustering in vivo. Unexpectedly, in the absence of ankyrin-G, erythrocyte ankyrin (ankyrin-R) and its binding partner ßI spectrin substitute for and rescue nodal Na(+) channel clustering. In addition, channel clustering is also rescued after loss of nodal ßIV spectrin by ßI spectrin and ankyrin-R. In mice lacking both ankyrin-G and ankyrin-R, Na(+) channels fail to cluster at nodes. Thus, ankyrin R-ßI spectrin protein complexes function as secondary reserve Na(+) channel clustering machinery, and two independent ankyrin-spectrin protein complexes exist in myelinated axons to cluster Na(+) channels at nodes of Ranvier.


Asunto(s)
Ancirinas/análisis , Nódulos de Ranvier/química , Canales de Sodio/análisis , Espectrina/análisis , Animales , Ancirinas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Nódulos de Ranvier/metabolismo , Ratas , Canales de Sodio/metabolismo , Espectrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA