Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 241: 112670, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36841175

RESUMEN

BACKGROUND: Antimicrobial blue light (aBL) kills a variety of bacteria, including Porphyromonas gingivalis. However, little is known about the transcriptomic response of P. gingivalis to aBL therapy. This study was designed to evaluate the selective cytotoxicity of aBL against P. gingivalis over human cells and to further investigate the genetic response of P. gingivalis to aBL at the transcriptome level. METHODS: Colony forming unit (CFU) testing, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM) were used to investigate the antimicrobial effectiveness of blue light against P. gingivalis. The temperatures of the irradiated targets were measured to prevent overheating. Multiple fluorescent probes were used to quantify reactive oxygen species (ROS) generation after blue-light irradiation. RNA sequencing (RNA-seq) was used to investigate the changes in global gene expression. Following the screening of target genes, real-time quantitative polymerase chain reaction (RT-qPCR) was performed to confirm the regulation of gene expression. RESULTS: A 405 nm aBL at 100 mW/cm2 significantly killed P. gingivalis within 5 min while sparing human gingival fibroblasts (HGFs). No obvious temperature changes were detected in the irradiated surface under our experimental conditions. RNA-seq showed that the transcription of multiple genes was regulated, and RT-qPCR revealed that the expression levels of the genes RgpA and RgpB, which may promote heme uptake, as well as the genes Ftn and FetB, which are related to iron homeostasis, were significantly upregulated. The expression levels of the FeoB-2 and HmuR genes, which are related to hydroxyl radical scavenging, were significantly downregulated. CONCLUSIONS: aBL strengthens the heme uptake and iron export gene pathways while reducing the ROS scavenging pathways in P. gingivalis, thus improving the accumulation of endogenous photosensitizers and enhancing oxidative damage to P. gingivalis.


Asunto(s)
Color , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Hierro , Luz , Porfirinas , Porphyromonas gingivalis , Porfirinas/metabolismo , Hierro/metabolismo , Porphyromonas gingivalis/citología , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/efectos de la radiación , Transporte Biológico/genética , Transporte Biológico/efectos de la radiación , Humanos , Encía/citología , Fibroblastos/citología , Fibroblastos/efectos de la radiación , Radical Hidroxilo/metabolismo , Hemo/metabolismo , Regulación hacia Arriba/efectos de la radiación , Homeostasis/efectos de la radiación , Regulación hacia Abajo/efectos de la radiación , Viabilidad Microbiana/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Aerobiosis , Genes Bacterianos/efectos de la radiación , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA