Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biophys J ; 122(10): 1846-1857, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37077048

RESUMEN

Single-particle electron cryo-microscopy (cryo-EM) has become an effective and straightforward approach to determine the structure of membrane proteins. However, obtaining cryo-EM grids of sufficient quality for high-resolution structural analysis remains a major bottleneck. One of the difficulties arises from the presence of detergents, which often leads to a lack of control of the ice thickness. Amphipathic polymers such as amphipols (APols) are detergent substitutes, which have proven to be valuable tools for cryo-EM studies. In this work, we investigate the physico-chemical behavior of APol- and detergent-containing solutions and show a correlation with the properties of vitreous thin films in cryo-EM grids. This study provides new insight on the potential of APols, allowing a better control of ice thickness while limiting protein adsorption at the air-water interface, as shown with the full-length mouse serotonin 5-HT3A receptor whose structure has been solved in APol. These findings may speed up the process of grid optimization to obtain high-resolution structures of membrane proteins.


Asunto(s)
Detergentes , Tensoactivos , Animales , Ratones , Tensoactivos/química , Microscopía por Crioelectrón , Electrones , Hielo , Proteínas de la Membrana
2.
Anal Chem ; 94(41): 14151-14158, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36200347

RESUMEN

One of the biggest challenges in membrane protein (MP) research is to secure physiologically relevant structural and functional information after extracting MPs from their native membrane. Amphipathic polymers represent attractive alternatives to detergents for stabilizing MPs in aqueous solutions. The predominant polymers used in MP biochemistry and biophysics are amphipols (APols), one class of which, styrene maleic acid (SMA) copolymers and their derivatives, has proven particularly efficient at MP extraction. In order to examine the relationship between the chemical structure of the polymers and their ability to extract MPs from membranes, we have developed two novel classes of APols bearing either cycloalkane or aryl (aromatic) rings, named CyclAPols and ArylAPols, respectively. The effect on solubilization of such parameters as the density of hydrophobic groups, the number of carbon atoms and their arrangement in the hydrophobic moieties, as well as the charge density of the polymers was evaluated. The membrane-solubilizing efficiency of the SMAs, CyclAPols, and ArylAPols was compared using as models (i) two MPs, BmrA and a GFP-fused version of LacY, overexpressed in the inner membrane of Escherichia coli, and (ii) bacteriorhodopsin, naturally expressed in the purple membrane of Halobacterium salinarum. This analysis shows that, as compared to SMAs, the novel APols feature an improved efficiency at extracting MPs while preserving native protein-lipid interactions.


Asunto(s)
Bacteriorodopsinas , Cicloparafinas , Carbono , Detergentes/química , Lípidos , Maleatos/química , Polímeros/química , Poliestirenos/química
4.
Commun Biol ; 4(1): 1337, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34824357

RESUMEN

Membrane proteins are essential for cellular growth, signalling and homeostasis, making up a large proportion of therapeutic targets. However, the necessity for a solubilising agent to extract them from the membrane creates challenges in their structural and functional study. Although amphipols have been very effective for single-particle electron cryo-microscopy (cryoEM) and mass spectrometry, they rely on initial detergent extraction before exchange into the amphipol environment. Therefore, circumventing this pre-requirement would be a big advantage. Here we use an alternative type of amphipol: a cycloalkane-modified amphiphile polymer (CyclAPol) to extract Escherichia coli AcrB directly from the membrane and demonstrate that the protein can be isolated in a one-step purification with the resultant cryoEM structure achieving 3.2 Å resolution. Together this work shows that cycloalkane amphipols provide a powerful approach for the study of membrane proteins, allowing native extraction and high-resolution structure determination by cryoEM.


Asunto(s)
Microscopía por Crioelectrón/métodos , Cicloparafinas/química , Proteínas de Escherichia coli/aislamiento & purificación , Escherichia coli/fisiología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/aislamiento & purificación , Polímeros/química , Microscopía por Crioelectrón/instrumentación
5.
Biotechnol Bioeng ; 118(11): 4317-4330, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34297405

RESUMEN

Pathogen surface antigens are at the forefront of the viral strategy when invading host organisms. These antigens, including membrane proteins (MPs), are broadly targeted by the host immune response. Obtaining these MPs in a soluble and stable form constitutes a real challenge, regardless of the application purposes (e.g. quantification/characterization assays, diagnosis, and preventive and curative strategies). A rapid process to obtain a native-like antigen by solubilization of a full-length MP directly from a pathogen is reported herein. Rabies virus (RABV) was used as a model for this demonstration and its full-length G glycoprotein (RABV-G) was stabilized with amphipathic polymers, named amphipols (APols). The stability of RABV-G trapped in APol A8-35 (RABV-G/A8-35) was evaluated under different stress conditions (temperature, agitation, and light exposure). RABV-G/A8-35 in liquid form exhibited higher unfolding temperature (+6°C) than in detergent and was demonstrated to be antigenically stable over 1 month at 5°C and 25°C. Kinetic modeling of antigenicity data predicted antigenic stability of RABV-G/A8-35 in a solution of up to 1 year at 5°C. The RABV-G/A8-35 complex formulated in an optimized buffer composition and subsequently freeze-dried displayed long-term stability for 2-years at 5, 25, and 37°C. This study reports for the first time that a natural full-length MP extracted from a virus, complexed to APols and subsequently freeze-dried, displayed long-term antigenic stability, without requiring storage under refrigerated conditions.


Asunto(s)
Antígenos Virales/química , Antígenos Virales/aislamiento & purificación , Detergentes/química , Virus de la Rabia/química , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/aislamiento & purificación , Liofilización , Estabilidad Proteica
6.
Q Rev Biophys ; 54: e6, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33785082

RESUMEN

Over the past decade, the structural biology of membrane proteins (MPs) has taken a new turn thanks to epoch-making technical progress in single-particle electron cryo-microscopy (cryo-EM) as well as to improvements in sample preparation. The present analysis provides an overview of the extent and modes of usage of the various types of surfactants for cryo-EM studies. Digitonin, dodecylmaltoside, protein-based nanodiscs, lauryl maltoside-neopentyl glycol, glyco-diosgenin, and amphipols (APols) are the most popular surfactants at the vitrification step. Surfactant exchange is frequently used between MP purification and grid preparation, requiring extensive optimization each time the study of a new MP is undertaken. The variety of both the surfactants and experimental approaches used over the past few years bears witness to the need to continue developing innovative surfactants and optimizing conditions for sample preparation. The possibilities offered by novel APols for EM applications are discussed.


Asunto(s)
Electrones , Proteínas de la Membrana , Microscopía por Crioelectrón , Tensoactivos
7.
Biomacromolecules ; 21(8): 3459-3467, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32602705

RESUMEN

Membrane proteins (MPs) need to be extracted from biological membranes and purified in their native state for most structural and functional in vitro investigations. Amphiphilic copolymers, such as amphipols (APols), have emerged as very useful alternatives to detergents for keeping MPs water-soluble under their native form. However, classical APols, such as poly(acrylic acid) (PAA) derivatives, seldom enable direct MP extraction. Poly(styrene maleic anhydride) copolymers (SMAs), which bear aromatic rings as hydrophobic side groups, have been reported to be more effective extracting agents. In order to test the hypothesis of the role of cyclic hydrophobic moieties in membrane solubilization by copolymers, we have prepared PAA derivatives comprising cyclic rather than linear aliphatic side groups (CyclAPols). As references, APol A8-35, SMAs, and diisobutylene maleic acid (DIBMA) were compared with CyclAPols. Using as models the plasma membrane of Escherichia coli and the extraction-resistant purple membrane from Halobacterium salinarum, we show that CyclAPols combine the extraction efficiency of SMAs with the stabilization afforded to MPs by classical APols such as A8-35.


Asunto(s)
Cicloparafinas , Polímeros , Escherichia coli , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de la Membrana
8.
Vaccine ; 38(28): 4412-4422, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32386746

RESUMEN

A new vaccine formulated with the Chlamydia muridarum native major outer membrane protein (nMOMP) and amphipols was assessed in an intranasal (i.n.) challenge mouse model. nMOMP was trapped either in amphipol A8-35 (nMOMP/A8-35) or in A8-35 conjugated with Resiquimod (nMOMP/Resiq-A8-35), a TLR7/8 agonist added as adjuvant. The effects of free Resiquimod and/or additional adjuvants, Montanide ISA 720 (TLR independent) and CpG-1826 (TLR9 agonist), were also evaluated. Immunization with nMOMP/A8-35 alone administered i.n. was used as negative adjuvant-control group, whereas immunizations with C. muridarum elementary bodies (EBs) and MEM buffer, administered i.n., were used as positive and negative controls, respectively. Vaccinated mice were challenged i.n. with C. muridarum and changes in body weight, lungs weight and recovery of Chlamydia from the lungs were evaluated. All the experimental groups showed protection when compared with the negative control group. Resiquimod alone produced weak humoral and cellular immune responses, but both Montanide and CpG-1826 showed significant increases in both responses. The addition of CpG-1826 alone switched immune responses to be Th1-biased. The most robust protection was elicited in mice immunized with the three adjuvants and conjugated Resiquimod. Increased protection induced by the Resiquimod covalently linked to A8-35, in the presence of Montanide and CpG-1826 was established based on a set of parameters: (1) the ability of the antibodies to neutralize C. muridarum; (2) the increased proliferation of T-cells in vitro accompanied by higher production of IFN-γ, IL-6 and IL-17; (3) the decreased body weight loss over the 10 days after challenge; and (4) the number of IFUs recovered from the lungs at day 10 post challenge. In conclusion, a vaccine formulated with the C. muridarum nMOMP bound to amphipols conjugated with Resiquimod enhances protective immune responses that can be further improved by the addition of Montanide and CpG-1826.


Asunto(s)
Infecciones por Chlamydia , Chlamydia muridarum , Adyuvantes Inmunológicos , Animales , Anticuerpos Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Vacunas Bacterianas , Infecciones por Chlamydia/prevención & control , Imidazoles , Ratones , Ratones Endogámicos BALB C , Oligodesoxirribonucleótidos
9.
Biochim Biophys Acta Biomembr ; 1861(2): 466-477, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30444973

RESUMEN

Membrane protein (MP) complexes play key roles in all living cells. Their structural characterisation is hampered by difficulties in purifying and crystallising them. Recent progress in electron microscopy (EM) have revolutionised the field, not only by providing higher-resolution structures for previously characterised MPs but also by yielding first glimpses into the structure of larger and more challenging complexes, such as bacterial secretion systems. However, the resolution of pioneering EM structures may be difficult and their interpretation requires clues regarding the overall organisation of the complexes. In this context, we present BAmSA, a new method for localising transmembrane (TM) regions in MP complexes, using a general procedure that allows tagging them without resorting to neither genetic nor chemical modification. Labels bound to TM regions can be visualised directly on raw negative-stain EM images, on class averages, or on three-dimensional reconstructions, providing a novel strategy to explore the organisation of MP complexes.


Asunto(s)
Membrana Celular/ultraestructura , Proteínas de la Membrana/ultraestructura , Microscopía Electrónica , Polímeros/química , Estreptavidina/química , Animales , Biotinilación , Bovinos , Complejo III de Transporte de Electrones/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Modelos Moleculares , Coloración Negativa
10.
Vaccine ; 36(45): 6640-6649, 2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30293763

RESUMEN

INTRODUCTION: Chlamydial infections are spread worldwide and a vaccine is needed to control this pathogen. The goals of this study were to determine if the delivery of an adjuvant associated to the antigen, via a derivatized amphipol, and adjuvant combinations improve vaccine protection. METHODS: A novel approach, trapping the Chlamydia muridarum (Cm) native MOMP (nMOMP) with amphipols (A8-35), bearing a covalently conjugated peptide (EP67), was used. Adjuvants incorporated were: EP67 either conjugated to A8-35, which was used to trap nMOMP (nMOMP/EP67-A8-35), or free as a control, added to nMOMP/A8-35 complexes (nMOMP/A8-35+EP67); Montanide ISA 720 to enhance humoral responses, and CpG-1826 to elicit robust cell-mediated immunity (CMI). BALB/c mice were immunized by mucosal and systemic routes. Intranasal immunization with live Cm was used as positive control and three negative controls were included. Mice were challenged intranasally with Cm and changes in body weight, lungs weight and number of Cm-inclusion forming units (IFU) recovered from the lungs were evaluated to establish protection. To assess local responses levels of IFN- γ and Cm-specific IgA were determined in lungs' supernatants. RESULTS: Structural assays demonstrated that nMOMP secondary structure and thermal stability were maintained when A8-35 was covalently modified. Mice vaccinated with nMOMP/EP67-A8-35 were better protected than animals immunized with nMOMP/A8-35+EP67. Addition of Montanide enhanced Th2 responses and improved protection. Including CpG-1826 further broadened, intensified and switched to Th1-biased immune responses. With delivery of nMOMP and the three adjuvants, as determined by changes in body weight, lungs weight and number of IFU recovered from lungs, protection at 10 days post-challenge was equivalent to that induced by immunization with live Cm. CONCLUSIONS: Covalent association of EP67 to A8-35, used to keep nMOMP water-soluble, improves protection over that conferred by free EP67. Adjuvant combinations including EP67+Montanide+CpG-1826, by broadening and intensifying cellular and humoral immune responses, further enhanced protection.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/uso terapéutico , Infecciones por Chlamydia/prevención & control , Animales , Anticuerpos Antibacterianos/inmunología , Chlamydia muridarum/inmunología , Chlamydia muridarum/patogenicidad , Femenino , Ratones , Ratones Endogámicos BALB C
11.
Front Mol Biosci ; 5: 38, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29725595

RESUMEN

We have recently reported on the preparation of a membrane-associated ß-barrel Pore-Forming Aß42 Oligomer (ßPFOAß42). It corresponds to a stable and homogeneous Aß42 oligomer that inserts into lipid bilayers as a well-defined pore and adopts a specific structure with characteristics of a ß-barrel arrangement. As a follow-up of this work, we aim to establish ßPFOAß42's relevance in Alzheimer's disease (AD). However, ßPFOAß42 is formed under dodecyl phosphocholine (DPC) micelle conditions-intended to mimic the hydrophobic environment of membranes-which are dynamic. Consequently, dilution of the ßPFOAß42/DPC complex in a detergent-free buffer leads to dispersion of the DPC molecules from the oligomer surface, leaving the oligomer without the hydrophobic micelle belt that stabilizes it. Since dilution is required for any biological test, transfer of ßPFOAß42 from DPC micelles into another hydrophobic biomimetic membrane environment, that remains associated with ßPFOAß42 even under high dilution conditions, is a requisite for the validation of ßPFOAß42 in AD. Here we describe conditions for exchanging DPC micelles with amphipols (APols), which are amphipathic polymers designed to stabilize membrane proteins in aqueous solutions. APols bind in an irreversible but non-covalent manner to the hydrophobic surface of membrane proteins preserving their structure even under extreme dilution conditions. We tested three types of APols with distinct physical-chemical properties and found that the ßPFOAß42/DPC complex can only be trapped in non-ionic APols (NAPols). The characterization of the resulting ßPFOAß42/NAPol complex by biochemical tools and structural biology techniques allowed us to establish that the oligomer structure is maintained even under high dilution. Based on these findings, this work constitutes a first step towards the in vivo validation of ßPFOAß42 in AD.

12.
Methods ; 147: 95-105, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29678587

RESUMEN

Membrane proteins (MPs) are important pharmacological targets because of their involvement in many essential cellular processes whose dysfunction can lead to a large variety of diseases. A detailed knowledge of the structure of MPs and the molecular mechanisms of their activity is essential to the design of new therapeutic agents. However, studying MPs in vitro is challenging, because it generally implies their overexpression under a functional form, followed by their extraction from membranes and purification. Targeting an overexpressed MP to a membrane is often toxic and expression yields tend to be limited. One alternative is the formation of inclusion bodies (IBs) in the cytosol of the cell, from which MPs need then to be folded to their native conformation before structural and functional analysis can be contemplated. Folding MPs targeted to IBs is a difficult task. Specially designed amphipathic polymers called 'amphipols' (APols), which have been initially developed with the view of improving the stability of MPs in aqueous solutions compared to detergents, can be used to fold both α-helical and ß-barrel MPs. APols represent an interesting novel amphipathic medium, in which high folding yields can be achieved. In this review, the properties of APol A8-35 and of the complexes they form with MPs are summarized. An overview of the most important studies reported so far using A8-35 to fold MPs is presented. Finally, from a practical point of view, a detailed description of the folding and trapping methods is given.


Asunto(s)
Proteínas de la Membrana/química , Polímeros/química , Propilaminas/química , Pliegue de Proteína , Conformación Proteica en Hélice alfa , Desnaturalización Proteica , Estabilidad Proteica
13.
Biomacromolecules ; 16(12): 3751-61, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26492302

RESUMEN

Amphipols (APols) are short amphipathic polymers that stabilize membrane proteins (MPs) in aqueous solutions. In the present study, A8-35, a polyacrylate-based APol, was grafted with hexahistidine tags (His6-tags). The synthesis and characterization of this novel functionalized APol, named HistAPol, are described. Its ability to immobilize MPs on nickel ion-bearing surfaces was tested using two complementary methods, immobilized metal affinity chromatography (IMAC) and surface plasmon resonance (SPR). Compared to a single His6-tag fused at one extremity of a MP, the presence of several His6-tags carried by the APol belt surrounding the transmembrane domain of a MP increases remarkably the affinity of the protein/APol complex for nickel ion-bearing SPR chips, whereas it does not show such a strong effect on an IMAC resin. HistAPol-mediated immobilization, which allows reversibility of the interaction and easy regeneration of the supports and dispenses with any genetic modification of the target protein, provides a novel, promising tool for attaching MPs onto solid supports while stabilizing them.


Asunto(s)
Histidina/química , Proteínas Inmovilizadas/química , Proteínas de la Membrana/química , Oligopéptidos/química , Polímeros/síntesis química , Propilaminas/síntesis química , Cationes Bivalentes , Cromatografía de Afinidad , Níquel/química , Polímeros/química , Propilaminas/química , Estabilidad Proteica , Soluciones , Resonancia por Plasmón de Superficie , Agua
14.
Int J Mass Spectrom ; 391: 54-61, 2015 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-26869850

RESUMEN

Membrane proteins (MPs) are essential for numerous important biological processes. Recently, mass spectrometry (MS), coupled with an array of related techniques, has been used to probe the structural properties of MPs and their complexes. Typically, detergent micelles have been employed for delivering MPs into the gas-phase, but these complexes have intrinsic properties that can limit the utility of structural studies of MPs using MS methods. Amphipols (APols) have advantages over detergent micelles and have been shown to be capable of delivering native MPs into the gas-phase. Comparing six different APols which vary in mass and charge, and the detergent n-dodecyl-ß-d-maltopyranoside, we aimed to determine which APols are most efficient for delivery of native outer membrane proteins (OMPs) into the gas-phase. We show that maintaining the solution-phase folding and global structures of three different OMPs (PagP, OmpT and tOmpA) are independent of the APol used, but differences in OMP activity can result from the different APol:OMP complexes. ESI-IMS-MS analysis of OMP:APol complexes shows that the A8-35 APol is most proficient at liberating all three OMPs into the gas-phase, without altering their gas-phase conformations.

15.
J Membr Biol ; 247(9-10): 759-96, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24969706

RESUMEN

Amphipols (APols) are short amphipathic polymers that can substitute for detergents at the transmembrane surface of membrane proteins (MPs) and, thereby, keep them soluble in detergent free aqueous solutions. APol-trapped MPs are, as a rule, more stable biochemically than their detergent-solubilized counterparts. APols have proven useful to produce MPs, most noticeably by assisting their folding from the denatured state obtained after solubilizing MP inclusion bodies in either SDS or urea. They facilitate the handling in aqueous solution of fragile MPs for the purpose of proteomics, structural and functional studies, and therapeutics. Because APols can be chemically labeled or functionalized, and they form very stable complexes with MPs, they can also be used to functionalize those indirectly, which opens onto many novel applications. Following a brief recall of the properties of APols and MP/APol complexes, an update is provided of recent progress in these various fields.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Polímeros/química , Tensoactivos/química , Agua/química , Animales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Soluciones
16.
J Membr Biol ; 247(9-10): 1005-18, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24862870

RESUMEN

Nutrient import across Gram-negative bacteria's outer membrane is powered by the proton-motive force, delivered by the cytoplasmic membrane protein complex ExbB-ExbD-TonB. Having purified the ExbB4-ExbD2 complex in the detergent dodecyl maltoside, we substituted amphipol A8-35 for detergent, forming a water-soluble membrane protein/amphipol complex. Properties of the ExbB4-ExbD2 complex in detergent or in amphipols were compared by gel electrophoresis, size exclusion chromatography, asymmetric flow field-flow fractionation, thermal stability assays, and electron microscopy. Bound detergent and fluorescently labeled amphipol were assayed quantitatively by 1D NMR and analytical ultracentrifugation, respectively. The structural arrangement of ExbB4-ExbD2 was examined by EM, small-angle X-ray scattering, and small-angle neutron scattering using a deuterated amphipol. The amphipol-trapped ExbB4-ExbD2 complex is slightly larger than its detergent-solubilized counterpart. We also investigated a different oligomeric form of the two proteins, ExbB6-ExbD4, and propose a structural arrangement of its transmembrane α-helical domains.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Polímeros/química , Propilaminas/química , Tensoactivos/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Sitios de Unión , Escherichia coli/química , Interacciones Hidrofóbicas e Hidrofílicas , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Unión Proteica , Conformación Proteica , Solubilidad
17.
Nucleic Acids Res ; 42(10): e83, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24744236

RESUMEN

Amphipols (APols) are specially designed amphipathic polymers that stabilize membrane proteins (MPs) in aqueous solutions in the absence of detergent. A8-35, a polyacrylate-based APol, has been grafted with an oligodeoxynucleotide (ODN). The synthesis, purification and properties of the resulting 'OligAPol' have been investigated. Grafting was performed by reacting an ODN carrying an amine-terminated arm with the carboxylates of A8-35. The use of OligAPol for trapping MPs and immobilizing them onto solid supports was tested using bacteriorhodopsin (BR) and the transmembrane domain of Escherichia coli outer membrane protein A (tOmpA) as model proteins. BR and OligAPol form water-soluble complexes in which BR remains in its native conformation. Hybridization of the ODN arm with a complementary ODN was not hindered by the assembly of OligAPol into particles, nor by its association with BR. BR/OligAPol and tOmpA/OligAPol complexes could be immobilized onto either magnetic beads or gold nanoparticles grafted with the complementary ODN, as shown by spectroscopic measurements, fluorescence microscopy and the binding of anti-BR and anti-tOmpA antibodies. OligAPols provide a novel, highly versatile approach to tagging MPs, without modifying them chemically nor genetically, for specific, reversible and targetable immobilization, e.g. for nanoscale applications.


Asunto(s)
Proteínas de la Membrana/química , Oligodesoxirribonucleótidos/química , Polímeros/química , Propilaminas/química , Proteínas de la Membrana Bacteriana Externa/química , Bacteriorodopsinas/química , Oro , Proteínas Inmovilizadas/química , Nanopartículas del Metal , Microesferas , Hibridación de Ácido Nucleico , Polímeros/síntesis química , Propilaminas/síntesis química
18.
J Membr Biol ; 247(9-10): 815-26, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24728227

RESUMEN

Amphipols are amphipathic polymers that stabilize membrane proteins isolated from their native membrane. They have been functionalized with various chemical groups in the past years for protein labeling and protein immobilization. This large toolbox of functionalized amphipols combined with their interesting physico-chemical properties give opportunities to selectively add multiple functionalities to membrane proteins and to tune them according to the needs. This unique combination of properties makes them one of the most versatile strategies available today for exploiting membrane proteins onto surfaces for various applications in synthetic biology. This review summarizes the properties of functionalized amphipols suitable for synthetic biology approaches.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Polímeros/química , Tensoactivos/química , Biología Sintética/métodos , Agua/química , Animales , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Soluciones
19.
J Membr Biol ; 247(9-10): 965-70, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24668145

RESUMEN

Amphipathic polymers called amphipols provide a valuable alternative to detergents for keeping integral membrane proteins soluble in aqueous buffers. Here, we characterize spatial contacts of amphipol A8-35 with membrane proteins from two architectural classes: The 8-stranded ß-barrel outer membrane protein OmpX and the α-helical protein bacteriorhodopsin. OmpX is well structured in A8-35, with its barrel adopting a fold closely similar to that in dihexanoylphosphocholine micelles. The accessibility of A8-35-trapped OmpX by a water-soluble paramagnetic molecule is highly similar to that in detergent micelles and resembles the accessibility in the natural membrane. For the α-helical protein bacteriorhodopsin, previously shown to keep its fold and function in amphipols, NMR data show that the imidazole protons of a polyhistidine tag at the N-terminus of the protein are exchange protected in the presence of detergent and lipid bilayer nanodiscs, but not in amphipols, indicating the absence of an interaction in the latter case. Overall, A8-35 exhibits protein interaction properties somewhat different from detergents and lipid bilayer nanodiscs, while maintaining the structure of solubilized integral membrane proteins.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Bacteriorodopsinas/química , Bacteriorodopsinas/ultraestructura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestructura , Hidrolasas/química , Hidrolasas/ultraestructura , Polímeros/química , Propilaminas/química , Solventes/química , Tensoactivos/química , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas/métodos , Estructura Terciaria de Proteína , Solubilidad
20.
J Membr Biol ; 247(9-10): 827-42, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24676477

RESUMEN

Solution-state nuclear magnetic resonance studies of membrane proteins are facilitated by the increased stability that trapping with amphipols confers to most of them as compared to detergent solutions. They have yielded information on the state of folding of the proteins, their areas of contact with the polymer, their dynamics, water accessibility, and the structure of protein-bound ligands. They benefit from the diversification of amphipol chemical structures and the availability of deuterated amphipols. The advantages and constraints of working with amphipols are discussed and compared to those associated with other non-conventional environments, such as bicelles and nanodiscs.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Espectroscopía de Resonancia Magnética/métodos , Proteínas de la Membrana/química , Polímeros/química , Tensoactivos/química , Animales , Artefactos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Soluciones , Evaluación de la Tecnología Biomédica , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...