Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 52(6): 1806-1819, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36661046

RESUMEN

The iron(III) anionic complex based on a pyruvic acid thiosemicarbazone ligand with the lithium cation Li[FeIII(thpy)2]·3H2O (1) has been synthesized and characterized by FTIR spectroscopy, powder and single crystal X-ray diffraction, direct current magnetic susceptibility measurements, and 57Fe Mössbauer spectroscopy. Moreover, the molecular structure of the [Fe(thpy)2]- anion has been determined for the first time. The [Fe(thpy)2]- units in the triclinic P1̄ lattice of 1 are assembled into layers parallel to the bc plane. The Li+ cations and water molecules are located between the layers and the structure is stabilized by hydrogen bonding. The [Fe(thpy)2]- anions form interconnected dimer pairs through hydrogen bonds and short contacts with Fe⋯Fe separation of 6.7861(4) Å. According to dc magnetic measurements, compound 1 demonstrates an incipient spin-crossover transition from the LS (S = 1/2) to the HS (S = 5/2) state above 250 K. The Bleaney-Bowers equation for a model of an isolated LS dimer with a mean-field correction was applied to fit the experimental data of magnetic susceptibility dependence on temperature in the temperature range of 2-250 K. The intra-dimer J1 = -1.79(1) K and inter-dimer J2 = -0.24(3) K antiferromagnetic coupling constants were defined. The analysis of the 57Fe Mössbauer spectra at 80 K and 296 K confirms the presence of the shortened distances between the iron nuclei. Moreover, the influence of the lithium cation on the stabilization of the LS state was shown for the [Fe(thpy)2]- anion. BS-DFT calculations for the optimized structure of two isolated [Fe(thpy)2]- anions also correctly predict a weak exchange J1(calc) = -0.92 K. DFT calculations revealed the OPBE (GGA-type) functional that correctly predicts the spin-crossover transition for the iron(III) thpy compounds. Besides, the effect of the N2O4, N2S2O2, and N2Se2O2 coordination environments on the energy stabilization of the LS state of iron(III) anionic thpy complexes was noted as well.

2.
Molecules ; 27(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36500611

RESUMEN

Four new heterometallic complexes combining [MII(H2dapsc)]2+ cations with the chelating H2dapsc {2,6-diacetylpyridine-bis(semicarbazone)} Schiff base ligand and [Cr(CN)6]3- anion were synthesized: {[MII(H2dapsc)]CrIII(CN)6K(H2O)2.5(EtOH)0.5}n·1.2n(H2O), M = Mn (1) and Co (2), {[Mn(H2dapsc)]2Cr(CN)6(H2O)2}Cl·H2O (3) and {[Co(H2dapsc)]2Cr(CN)6(H2O)2}Cl·2EtOH·3H2O (4). In all the compounds, M(II) centers are seven-coordinated by N3O2 atoms of H2dapsc in the equatorial plane and N or O atoms of two apical -CN/water ligands. Crystals 1 and 2 are isostructural and contain infinite negatively charged chains of alternating [MII(H2dapsc)]2+ and [CrIII(CN)6]3- units linked by CN-bridges. Compounds 3 and 4 consist of centrosymmetric positively charged trimers in which two [MII(H2dapsc)]2+ cations are bound through one [CrIII(CN)6]3- anion. All structures are regulated by π-stacking of coplanar H2dapsc moieties as well as by an extensive net of hydrogen bonding. Adjacent chains in 1 and 2 interact also by coordination bonds via a pair of K+ ions. The compounds containing MnII (1, 3) and CoII (2, 4) show a significant difference in magnetic properties. The ac magnetic measurements revealed that complexes 1 and 3 behave as a spin glass and a field-induced single-molecule magnet, respectively, while 2 and 4 do not exhibit slow magnetic relaxation in zero and non-zero dc fields. The relationship between magnetic properties and non-covalent interactions in the structures 1-4 was traced.


Asunto(s)
Magnetismo , Bases de Schiff , Cristalografía por Rayos X , Ligandos , Bases de Schiff/química , Fenómenos Magnéticos
3.
Molecules ; 26(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34834001

RESUMEN

A series of six seven-coordinate pentagonal-bipyramidal (PBP) erbium complexes, with acyclic pentadentate [N3O2] Schiff-base ligands, 2,6-diacetylpyridine bis-(4-methoxybenzoylhydrazone) [H2DAPMBH], or 2,6-diacethylpyridine bis(salicylhydrazone) [H4DAPS], and various apical ligands in different charge states were synthesized: [Er(DAPMBH)(C2H5OH)Cl] (1); [Er(DAPMBH)(H2O)Cl]·2C2H5OH (2); [Er(DAPMBH)(CH3OH)Cl] (3); [Er(DAPMBH)(CH3OH)(N3)] (4); [(Et3H)N]+[Er(H2DAPS)Cl2]- (5); and [(Et3H)N]+[Y0.95Er0.05(H2DAPS)Cl2]- (6). The physicochemical properties, crystal structures, and the DC and AC magnetic properties of 1-6 were studied. The AC magnetic measurements revealed that most of Compounds 1-6 are field-induced single-molecule magnets, with estimated magnetization energy barriers, Ueff ≈ 16-28 K. The experimental study of the magnetic properties was complemented by theoretical analysis based on ab initio and crystal field calculations. An experimental and theoretical study of the magnetism of 1-6 shows the subtle impact of the type and charge state of the axial ligands on the SMM properties of these complexes.

4.
Inorg Chem ; 60(23): 17462-17479, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34757728

RESUMEN

A potassium salt of the N2S2O2-coordination Fe(III) anion K[Fe(5Cl-thsa)2] (1) (5Cl-thsa - 5-chlorosalicylaldehyde thiosemicarbazone) is synthesized and characterized structurally and magnetically over a wide temperature range. Two polymorphs of salt 1 characterized by the common 2D polymer nature and assigned to the same orthorhombic Pbcn space group have been identified. The molecular structure of the minor polymorph of 1 was solved and refined at 100, 250, and 300 K is shown to correspond to the LS configuration. The dominant polymorph of 1 features K+ cations disordered over a few crystallographic sites, while the minor polymorph includes fully ordered K+ cations. The major polymorph exhibits a complete three-step cooperative spin-crossover transition both in the heating and cooling modes: The first step occurs in a temperature range from 2 to 50 K; the second abrupt hysteretic step occurs from 200 to 250 K with T1/2 = 230 K and a 6 K hysteresis loop. The third gradual step occurs from 250 to 440 K. According to 57Fe Mössbauer, XRPD, and EXAFS data, the spin-crossover transition for the dominant polymorph is quite peculiar. Indeed, the increase in the HS concentration by 57% at the second step does not result in the expected significant increase in the iron(III)-ligand bond lengths. In addition, the final step of the spin conversion (ΔγHS = 26%) is associated with a structural phase transition with a symmetry lowering from the orthorhombic (Pbcn) to the monoclinic (P21/n) space group. This nontrivial phenomenon was investigated in detail by applying magnetization measurements, electron spin resonance, 57Fe Mössbauer spectroscopy, and DFT calculations. These results provide a new platform for understanding the multistep spin-crossover character in the Fe(III) thsa-complexes and related compounds.

5.
Chemistry ; 27(70): 17609-17619, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34618383

RESUMEN

Three tetraphenylborates of mononuclear Mn(III) cation complexes with hexadentate ligands, the products of the reaction between a N,N'-bis(3-aminopropyl)ethylenediamine and salicylaldehydes with the different haloid substitutions at the 5 or 3,5 positions, have been synthesized: [Mn(5-F-sal-N-1,5,8,12)]BPh4 (1), [Mn(3,5-diCl-sal-N-1,5,8,12)]BPh4 (2) and [Mn(3,5-Br,Cl-sal-N-1,5,8,12)]BPh4 (3). Their crystal structure, dielectric constant (ϵ) and magnetic properties have been studied. Ligand substituents have a dramatic effect on the structure and magnetic properties of the complexes. With decreasing temperature, the complex (1) shows a gradual spin crossover from the high-spin state (HS) to the HS:LS intermediate phase, followed by an abrupt transition to the low-spin state (LS) without changing the crystal symmetry. The complexes 2 and 3 are isostructural, but have fundamentally different properties. Complex 2 demonstrates two structural phase transitions related to sharp spin crossovers from the HS to the HS:LS intermediate phase at 137 K and from the intermediate phase to the LS at 87 K, while complex 3 exhibits only one spin transition from the HS to the HS:LS intermediate phase at 83 K.

6.
Inorg Chem ; 60(13): 9857-9868, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34128654

RESUMEN

Metal complexes of trithiadodecaazahexaphyrin (Hhp) that contain MII3O clusters inside a π-extended trianionic (Hhp3-) macrocycle have been prepared. Studies of the magnetic properties of NiII3O(Hhp) and CuII3O(Hhp) reveal a diamagnetic and EPR-silent trianionic (Hhp3-) macrocycle and diamagnetic NiII3(O2-) or paramagnetic CuII3(O2-) tetracations. The positive charge of MII3O(Hhp) is compensated by one acetate anion {MII3O(Hhp)}+(CH3CO2-). The three-electron reduction of {MII3O(Hhp)}+ yields {cryptand(Cs+)}2{NiII2NiIO(Hhp5-)}2-·2C7H8 (1) and {cryptand(Cs+)}2{CuII3O(Hhp•6-)}2-·C7H8 (2) crystalline salts. The magnetic properties of 1 reveal the formation of Hhp5- and the reduction of nickel(II) to the paramagnetic NiI ion (S = 1/2), which is accompanied by the formation of the {NiII2NiIO(Hhp5-)}2- dianion. As a result, the magnetic moment of 1 is 1.68 µB in the 20-220 K range, and a broad EPR signal of NiI was observed. The Hhp5- macrocycle has a singlet ground state, but the increase in the magnitude of the magnetic moment of 1 above 220 K is attributed to the population of the triplet excited state in Hhp5-. The {NiII2NiIO(Hhp5-)}2- dianion is transferred from the doublet excited state to the quartet excited state with an energy gap of 1420 ± 50 K. Salt 1 also shows an unusually strong low-energy NIR absorption, which was observed at 1000-2200 nm. In 2, a highly reduced Hhp•6- radical hexaanion (S = 1/2) coexists with a CuII3(O2-) cluster (S = 1/2) in the {CuII3O(Hhp•6-)}2- dianions. The dianions have a triplet ground state with antiferromagnetic exchange between two S = 1/2 spins with J = -6.4 cm-1. The reduction of Hhp in both salts equalizes the initially alternated C-N bonds, supporting the increase in the Hhp macrocycle electron delocalization.

7.
Dalton Trans ; 49(43): 15287-15298, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33112327

RESUMEN

A series of three mononuclear pentagonal-bipyramidal V(iii) complexes with the equatorial pentadentate N3O2 ligand (2,6-diacethylpyridinebis(benzoylhydrazone), H2DAPBH) in the different charge states (H2DAPBH0, HDAPBH1-, DAPBH2-) and various apical ligands (Cl-, CH3OH, SCN-) were synthesized and characterized structurally and magnetically: [V(H2DAPBH)Cl2]Cl·C2H5OH (1), [V(HDAPBH)(NCS)2]·0.5CH3CN·0.5CH3OH (2) and [V(DAPBH)(CH3OH)2]Cl·CH3OH (3). All three complexes reveal paramagnetic behavior, resulting from isolated S = 1 spins with positive zero-field splitting energy expected for the high-spin ground state of the V3+ (3d2) ion in a PBP coordination. Detailed high-field EPR measurements for compound 3 show that its magnetic properties are best described by using the spin Hamiltonian with the positive ZFS energy (D = +4.1 cm-1) and pronounced dimer-like antiferromagnetic spin coupling (J = -1.1 cm-1). Theoretical analysis based on superexchange calculations reveals that the long-range spin coupling between distant V3+ ions (8.65 Å) is mediated through π-stacking contacts between the planar DAPBH2- ligands of two neighboring [V(DAPBH)(CH3OH)2]+ complexes.

8.
Molecules ; 25(21)2020 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33114397

RESUMEN

In this study, crystals of the hybrid layered structure, combined with Fe(III) Spin-Crossover (SCO) complexes with metal-dithiolate anionic radicals, and the precursors with nitrate and iodine counterions, are obtained and characterized. [Fe(III)(3-OMe-Sal2trien)][Ni(dmit)2] (1), [Fe(III)(3-OMe-Sal2trien)]NO3·H2O (2), [Fe(III)(3-OMe-Sal2trien)]I (3) (3-OMe-Sal2trien = hexadentate N4O2 Schiff base is the product of the condensation of triethylenetetramine with 3-methoxysalicylaldehyde; H2dmit = 2-thioxo-1,3-dithiole-4,5-dithiol). Bulk SCO transition was not achieved in the range 2.0-350 K for all three compounds. Alternatively, the hybrid system (1) exhibited irreversible segregation into the spatial fractions of Low-Spin (LS) and High-Spin (HS) phases of the ferric moiety, induced by thermal cycling. Fractioning was studied using both SQUID and EPR methods. Magnetic properties of the LS and HS phases were analyzed in the framework of cooperative interactions with anionic sublattice: Anion radical layers Ni(dmit)2 (1), and H-bonded chains with NO3 and I (2,3). LS phase of (1) exhibited unusual quasi-two-dimensional conductivity related to the Arrhenius mechanism in the anion radical layers, ρ||c = 2 × 105 Ohm·cm and ρ⟂c = 7 × 102 Ohm·cm at 293 K. Ground spin state of the insulating HS phase was distinctive by ferromagnetically coupled spin pairs of HS Fe3+, S = 5/2, and metal-dithiolate radicals, S = 1/2.


Asunto(s)
Complejos de Coordinación/química , Hierro/química , Níquel/química , Aniones/química , Cristalización , Conductividad Eléctrica , Radicales Libres/química , Enlace de Hidrógeno , Magnetismo , Modelos Moleculares , Estructura Molecular , Bases de Schiff/química , Tolueno/análogos & derivados , Tolueno/química
9.
Nanoscale ; 12(15): 8294-8302, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32236227

RESUMEN

We report a study where Car-Parrinello molecular dynamics simulations and variable-temperature (30-300 K) 1H spin-lattice relaxation time experiments nicely complement each other to characterize the dynamics within a set of four crystalline 1,4-diethynylbicyclo[2.2.2]octane (BCO) rotors assembled in the metal-organic rotor, {Li+4(-CO2-Ph-BCO-py)4(H2O)8}·2DMF. The remarkable finding of this work is that, despite the individual rotational barriers of four rotors being indiscernible and superimposed in a broad relaxation process, we were able to unravel a strongly interrelated series of rotational motions involving disrotatory and conrotatory motions in pairs as well as rotational steps of single rotators, all three processes with similar, sizeable rotational barriers of 6 kcal mol-1. It is noteworthy that DFT molecular dynamics simulations and variable-temperature (30-300 K) proton spin-lattice relaxation time experiments deliver the same high value for the rotational barriers stressing the potential of the combined use of the two techniques in understanding rotational motion at the nanoscale.

10.
Chemistry ; 25(65): 14858-14869, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31523861

RESUMEN

A series of compounds with Sc3 N@Ih -C80 in the neutral, monomeric, and dimeric anion states have been prepared in the crystalline form and their molecular structures and optical and magnetic properties have been studied. The neutral Sc3 N@Ih -C80 ⋅3 C6 H4 Cl2 (1) and (Sc3 N@Ih -C80 )3 (TPC)2 ⋅5 C6 H4 Cl2 (2, TPC=triptycene) compounds both crystallized in a high-symmetry trigonal structure. The reduction of Sc3 N@Ih -C80 to the radical anion resulted in dimerization to form diamagnetic singly bonded (Sc3 N@Ih -C80 - )2 dimers. In contrast to {[2.2.2]cryptand(Na+ )}2 (Sc3 N@Ih -C80 - )2 ⋅2.5 C6 H4 Cl2 (3) with strongly disordered components, we synthesized new dimeric phases {[2.2.2]cryptand- (K+ )}2 (Sc3 N@Ih -C80 - )2 ⋅2 C6 H4 Cl2 (4) and {[2.2.2]cryptand- (Cs+ )}2 (Sc3 N@Ih -C80 - )2 ⋅2 C6 H4 Cl2 (5) in which only one major dimer orientation was found. The thermal stability of the (Sc3 N@Ih -C80 - )2 dimers was studied by EPR analysis of 3 to show their dissociation in the 400-460 K range producing monomeric Sc3 N@Ih -C80 .- radical anions. This species shows an EPR signal with a hyperfine splitting of 5.8 mT. The energy of the intercage C-C bond was estimated to be 234±7 kJ mol-1 , the highest value among negatively charged fullerene dimers. The EPR spectra of crystalline (Bu3 MeP+ )3 (Sc3 N@Ih -C80 .- )3 ⋅C6 H4 Cl2 (6) are presented for the first time. The salt shows an asymmetric EPR signal, which could be fitted by three lines. Two lines were attributed to Sc3 N@Ih -C80 .- . Hyperfine splitting is manifested above 180 K due to the hyperfine interaction of the electron spin with the three scandium atoms (a total of 22 lines with an average splitting of 5.32 mT are observed at 220 K). Furthermore, each of the 22 lines is additionally split into six lines with an average separation of 0.82 mT. The large splitting indicates intrinsic charge and spin density transfer from the fullerene cage to the Sc3 N cluster. Both the monomeric and dimeric Sc3 N@Ih -C80 - anions show an intrinsic shift of the IR bands attributed to the Sc3 N cluster and new bands corresponding to these species appear in the NIR range of their UV/Vis/NIR spectra, which allows these anions to be distinguished from neutral species.

11.
Chemistry ; 25(64): 14583-14597, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31361924

RESUMEN

Reactions of [Mn(H2 dapsc)Cl2 ]⋅H2 O (dapsc=2,6- diacetylpyridine bis(semicarbazone)) with K3 [Fe(CN)6 ] and (PPh4 )3 [Fe(CN)6 ] lead to the formation of the chain polymeric complex {[Mn(H2 dapsc)][Fe(CN)6 ][K(H2 O)3.5 ]}n ⋅1.5n H2 O (1) and the discrete pentanuclear complex {[Mn(H2 dapsc)]3 [Fe(CN)6 ]2 (H2 O)2 }⋅4 CH3 OH⋅3.4 H2 O (2), respectively. In the crystal structure of 1 the high-spin [MnII (H2 dapsc)]2+ cations and low-spin hexacyanoferrate(III) anions are assembled into alternating heterometallic cyano-bridged chains. The K+ ions are located between the chains and are coordinated by oxygen atoms of the H2 dapsc ligand and water molecules. The magnetic structure of 1 is built from ferrimagnetic chains, which are antiferromagnetically coupled. The complex exhibits metamagnetism and frequency-dependent ac magnetic susceptibility, indicating single-chain magnetic behavior with a Mydosh-parameter φ=0.12 and an effective energy barrier (Ueff /kB ) of 36.0 K with τ0 =2.34×10-11  s for the spin relaxation. Detailed theoretical analysis showed highly anisotropic intra-chain spin coupling between [FeIII (CN)6 ]3- and [MnII (H2 dapsc)]2+ units resulting from orbital degeneracy and unquenched orbital momentum of [FeIII (CN)6 ]3- complexes. The origin of the metamagnetic transition is discussed in terms of strong magnetic anisotropy and weak AF interchain spin coupling.

12.
Dalton Trans ; 48(25): 9328-9336, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31166344

RESUMEN

The iron(iii) complex [Fe(Hsemsal)(semsal)]·3H2O (1) (H2semsal - salicylaldehyde semicarbazone) has been synthesized and characterized by powder and single crystal X-ray diffraction, and magnetic susceptibility measurements. Crystal structure analysis showed that the complex forms neat stacks stabilized by hydrogen-bonding through water molecules and π-π interactions between phenolate rings of ligands. The complex does not exhibit spin-crossover phenomena and remains in the high-spin state down to 2 K. DFT calculations were performed for a series of neutral Fe(iii) complexes, and the influence of the N2S2O2, N2Se2O2 and N2O4 coordination environment on the spin transition in these complexes was traced. The effect of substituents in the benzene ring of salicylaldehyde on the stabilization of the HS or LS states in complexes of this type was analyzed.

13.
Nano Lett ; 18(6): 3780-3784, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29737859

RESUMEN

Here we present a study where what can be seen as a static modulation wave encompassing four successive arrays of interacting iodine atoms in crystalline 1,4-Bis((4'-(iodoethynyl)phenyl) ethynyl)bicyclo[2,2,2]octane rotors changes the structure from one-half molecule to three-and-a-half molecules in the asymmetric unit below a phase transition at 105 K. The remarkable finding is that the total 1H spin-lattice relaxation rate, T1-1, of unprecedented complexity to date in molecular rotors, is the weighted sum of the relaxation rates of the four contributing rotors relaxation rates, each with distinguishable exchange frequencies reflecting Arrhenius parameters with different activation barriers ( Ea) and attempt frequencies (τo-1). This allows us to show in tandem with rotor-environment interaction energy calculations how the dynamics of molecular rotors are able to decode structural information from their surroundings with remarkable nanoscale precision.

14.
Inorg Chem ; 57(2): 583-589, 2018 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-29278502

RESUMEN

A diamagnetic complex, {(cis-indigo-N,N)2-(Cp*IrIII)} (1), in which deprotonated cis-indigo dianions coordinate an iridium center through two nitrogen atoms was obtained. By employment of the ability of the iridium center in 1 to coordinate an additional ligand, the complex [(Bu4N+)2{[SnII(Pc•3-)](cis-indigo-N,N)2-Cp*IrIII}•-2·0.5(H2Indigo)·2.5C6H4Cl2 (2), which has two functional ligands coordinating an IrIII center, was obtained. This complex has a magnetic moment of 1.71 µB at 300 K, in accordance with an S = 1/2 spin state. The spin density is mainly delocalized over the Pc•3- macrocycle and partially on (cis-indigo-N,N)2-. Due to an effective π-π interaction, a thermally activated charge transfer from [SnII(Pc•3-)]•- to (cis-indigo-N,N)2- is observed, with an estimated Gibbs energy (-ΔG°) of 9.27 ± 0.18 kJ/mol. The deprotonation of indigo associated with the coordination of IrIII by the indigo releases H+ ions, which protonate noncoordinating indigo molecules to produce leuco cis-indigo (H2Indigo). One H2indigo links two (cis-indigo-N,N)2- dianions in 2 to produce strong N-H···O═C and O-H···O═C hydrogen-bonding interactions.

15.
Inorg Chem ; 56(15): 8926-8943, 2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28686422

RESUMEN

Two one-dimensional cyano-bridged coordination polymers, namely, {[MnII(dapsc)][MnIII(CN)6][K(H2O)2.75(MeOH)0.5]}n·0.5n(H2O) (I) and {[MnII(dapsc)][MnIII(CN)6][K(H2O)2(MeOH)2]}n (II), based on alternating high-spin MnII(dapsc) (dapsc = 2,6-diacetylpyridine bis(semicarbazone)) complexes and low-spin orbitally degenerate hexacyanomanganate(III) complexes were synthesized and characterized structurally and magnetically. Static and dynamic magnetic measurements reveal a single-chain magnet (SCM) behavior of I with an energy barrier of Ueff ≈ 40 K. Magnetic properties of I are analyzed in detail in terms of a microscopic theory. It is shown that compound I refers to a peculiar case of SCM that does not fall into the usual Ising and Heisenberg limits due to unconventional character of the MnIII-CN-MnII spin coupling resulting from a nonmagnetic singlet ground state of orbitally degenerate complexes [MnIII(CN)6]3-. The prospects of [MnIII(CN)6]3- complex as magnetically anisotropic molecular building block for engineering molecular magnets are critically analyzed.

16.
Inorg Chem ; 55(17): 9121-30, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27541570

RESUMEN

The radical anion salt [Fe{HC(pz)3}2](TCNQ)3 demonstrates conductivity and spin-crossover (SCO) transition associated with Fe(II) complex cation subsystem. It was synthesized and structurally characterized at temperatures 100, 300, 400, and 450 K. The compound demonstrates unusual for 7,7,8,8,-tetracyanoquinodimethane (TCNQ)-based salts quasi-two-dimensional conductivity. Pronounced changes of the in-plane direct-current resistivity and intensity of the electron paramagnetic resonance (EPR) signal, originated from TCNQ subsystem, precede the SCO transition at the midpoint T* = 445 K. The boltzmannian growth of the total magnetic response and structural changes in the vicinity of T* uniquely show that half [Fe{HC(pz)3}2] cations exist in high-spin state. Robust broadening of the EPR signal triggered by the SCO transition is interpreted in terms of cross relaxation between the TCNQ and Fe(II) spin subsystems.

17.
Chem Commun (Camb) ; 52(71): 10763-6, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27511304

RESUMEN

Reduction of scandium nitride clusterfullerene, Sc3N@Ih-C80, by sodium fluorenone ketyl in the presence of cryptand[2,2,2] allows the crystallization of the {cryptand[2,2,2](Na(+))}2(Sc3N@Ih-C80(-))2·2.5C6H4Cl2 (1) salt. The Sc3N@Ih-C80˙(-) radical anions are dimerized to form single-bonded (Sc3N@Ih-C80(-))2 dimers.

18.
Sci Rep ; 3: 3390, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24292063

RESUMEN

Unconventional superconductivity typically occurs in materials in which a small change of a parameter such as bandwidth or doping leads to antiferromagnetic or Mott insulating phases. As such competing phases are approached, the properties of the superconductor often become increasingly exotic. For example, in organic superconductors and underdoped high-T(c) cuprate superconductors a fluctuating superconducting state persists to temperatures significantly above T(c). By studying alloys of quasi-two-dimensional organic molecular metals in the κ-(BEDT-TTF)2X family, we reveal how the Nernst effect, a sensitive probe of superconducting phase fluctuations, evolves in the regime of extreme Mott criticality. We find strong evidence that, as the phase diagram is traversed through superconductivity towards the Mott state, the temperature scale for superconducting fluctuations increases dramatically, eventually approaching the temperature at which quasiparticles become identifiable at all.

19.
Chem Commun (Camb) ; 49(87): 10272-4, 2013 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-24067860

RESUMEN

Using a slow liquid-gas diffusion method, the mixed-valence viologen salt (MV)2(BF4)3 (1) and the radical cation salt (MV)(BF4) (2) are crystallized. Both structures contain regular stacks of MV˙(+) radical cations (2) or alternating MV˙(+) and MV(2+) entities (1). A short intrastack intermolecular separation (3.23 Å) unprecedently reveals strong interactions between MV(2+) and MV˙(+) in 1.

20.
Artículo en Inglés | MEDLINE | ID: mdl-24046705

RESUMEN

The title compound, C13H9N3O3, crystallizes with two identical but differently oriented mol-ecules in the asymmetric unit, the dihedral angle between the fused-ring systems of the two molecules being 64.39 (7)°. The two prop-2-ynyl chains are located on opposite sides of the mol-ecule and are nearly perpendicular to the fused ring plane, as indicated by the C-N-C-C torsion angles in the range 106.0 (3)-113.4 (3)°. In the crystal, the two mol-ecules are linked through C-H⋯O hydrogen bonds into dimers, which are subsequently linked by further C-H⋯O inter-actions, building a three-dimensional network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...