Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Gen Physiol ; 156(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38445312

RESUMEN

RYR1 is the most commonly mutated gene associated with congenital myopathies, a group of early-onset neuromuscular conditions of variable severity. The functional effects of a number of dominant RYR1 mutations have been established; however, for recessive mutations, these effects may depend on multiple factors, such as the formation of a hypomorphic allele, or on whether they are homozygous or compound heterozygous. Here, we functionally characterize a new transgenic mouse model knocked-in for mutations identified in a severely affected child born preterm and presenting limited limb movement. The child carried the homozygous c.14928C>G RYR1 mutation, resulting in the p.F4976L substitution. In vivo and ex vivo assays revealed that homozygous mice fatigued sooner and their muscles generated significantly less force compared with their WT or heterozygous littermates. Electron microscopy, biochemical, and physiological analyses showed that muscles from RyR1 p.F4976L homozygous mice have the following properties: (1) contain fewer calcium release units and show areas of myofibrillar degeneration, (2) contain less RyR1 protein, (3) fibers show smaller electrically evoked calcium transients, and (4) their SR has smaller calcium stores. In addition, single-channel recordings indicate that RyR1 p.F4976L exhibits higher Po in the presence of 100 µM [Ca2+]. Our mouse model partly recapitulates the clinical picture of the homozygous human patient and provides significant insight into the functional impact of this mutation. These results will help understand the pathology of patients with similar RYR1 mutations.


Asunto(s)
Calcio , Enfermedades Musculares , Animales , Niño , Humanos , Ratones , Modelos Animales de Enfermedad , Homeostasis , Ratones Transgénicos , Músculos , Canal Liberador de Calcio Receptor de Rianodina/genética
2.
Neuromuscul Disord ; 33(12): 951-963, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37996280

RESUMEN

Malignant hyperthermia is a pharmacogenetic disorder triggered by halogenated anesthetic agents in genetically predisposed individuals. Approximately 70 % of these individuals carry mutations in RYR1, the gene encoding the ryanodine receptor calcium channel of skeletal muscle. In this study, we performed functional analysis of 5 RYR1 variants identified in members from 8 families who had been diagnosed by the IVCT. Of the 68 individuals enrolled in the study, 43 were diagnosed as MHS, 23 as MHN, and 2 individuals were not tested. Here we demonstrate that the 5 RyR1 variants cause hypersensitivity to RyR1 agonist-mediated calcium release. According to the EMHG scoring matrix these five genetic variants can be classified as follows: c.8638G>A (p.E2880K) and c.11314C>T (p.R3772W) likely pathogenic, c.11416G>A (p.G3806R), c.14627A>G (p.K4876R) and c.14813T>C (p.I4938T), pathogenic (RefSeq NM_000540.3). We propose that the newly functionally characterized RYR1 variants, be included in the panel of variants to be used for the molecular diagnosis of MHS.


Asunto(s)
Hipertermia Maligna , Humanos , Calcio/metabolismo , Predisposición Genética a la Enfermedad/genética , Hipertermia Maligna/genética , Músculo Esquelético , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética
3.
Elife ; 122023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36862731

RESUMEN

Skeletal muscles are a highly structured tissue responsible for movement and metabolic regulation, which can be broadly subdivided into fast and slow twitch muscles with each type expressing common as well as specific sets of proteins. Congenital myopathies are a group of muscle diseases leading to a weak muscle phenotype caused by mutations in a number of genes including RYR1. Patients carrying recessive RYR1 mutations usually present from birth and are generally more severely affected, showing preferential involvement of fast twitch muscles as well as extraocular and facial muscles. In order to gain more insight into the pathophysiology of recessive RYR1-congential myopathies, we performed relative and absolute quantitative proteomic analysis of skeletal muscles from wild-type and transgenic mice carrying p.Q1970fsX16 and p.A4329D RyR1 mutations which were identified in a child with a severe congenital myopathy. Our in-depth proteomic analysis shows that recessive RYR1 mutations not only decrease the content of RyR1 protein in muscle, but change the expression of 1130, 753, and 967 proteins EDL, soleus and extraocular muscles, respectively. Specifically, recessive RYR1 mutations affect the expression level of proteins involved in calcium signaling, extracellular matrix, metabolism and ER protein quality control. This study also reveals the stoichiometry of major proteins involved in excitation contraction coupling and identifies novel potential pharmacological targets to treat RyR1-related congenital myopathies.


Asunto(s)
Enfermedades Musculares , Canal Liberador de Calcio Receptor de Rianodina , Ratones , Animales , Ratones Transgénicos , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteómica , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Mutación
4.
Brain Commun ; 4(5): fcac224, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36196089

RESUMEN

Congenital myopathies are a group of early onset muscle diseases of variable severity often with characteristic muscle biopsy findings and involvement of specific muscle types. The clinical diagnosis of patients typically relies on histopathological findings and is confirmed by genetic analysis. The most commonly mutated genes encode proteins involved in skeletal muscle excitation-contraction coupling, calcium regulation, sarcomeric proteins and thin-thick filament interaction. However, mutations in genes encoding proteins involved in other physiological functions (for example mutations in SELENON and MTM1, which encode for ubiquitously expressed proteins of low tissue specificity) have also been identified. This intriguing observation indicates that the presence of a genetic mutation impacts the expression of other genes whose product is important for skeletal muscle function. The aim of the present investigation was to verify if there are common changes in transcript and microRNA expression in muscles from patients with genetically heterogeneous congenital myopathies, focusing on genes encoding proteins involved in excitation-contraction coupling and calcium homeostasis, sarcomeric proteins, transcription factors and epigenetic enzymes. Our results identify RYR1, ATPB2B and miRNA-22 as common transcripts whose expression is decreased in muscles from congenital myopathy patients. The resulting protein deficiency may contribute to the muscle weakness observed in these patients. This study also provides information regarding potential biomarkers for monitoring disease progression and response to pharmacological treatments in patients with congenital myopathies.

5.
Elife ; 112022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35238775

RESUMEN

To date there are no therapies for patients with congenital myopathies, muscle disorders causing poor quality of life of affected individuals. In approximately 30% of the cases, patients with congenital myopathies carry either dominant or recessive mutations in the ryanodine receptor 1 (RYR1) gene; recessive RYR1 mutations are accompanied by reduction of RyR1 expression and content in skeletal muscles and are associated with fiber hypotrophy and muscle weakness. Importantly, muscles of patients with recessive RYR1 mutations exhibit increased content of class II histone deacetylases and of DNA genomic methylation. We recently created a mouse model knocked-in for the p.Q1970fsX16+ p.A4329D RyR1 mutations, which are isogenic to those carried by a severely affected child suffering from a recessive form of RyR1-related multi-mini core disease. The phenotype of the RyR1 mutant mice recapitulates many aspects of the clinical picture of patients carrying recessive RYR1 mutations. We treated the compound heterozygous mice with a combination of two drugs targeting DNA methylases and class II histone deacetylases. Here, we show that treatment of the mutant mice with drugs targeting epigenetic enzymes improves muscle strength, RyR1 protein content, and muscle ultrastructure. This study provides proof of concept for the pharmacological treatment of patients with congenital myopathies linked to recessive RYR1 mutations.


Asunto(s)
Enfermedades Musculares , Miotonía Congénita , Animales , ADN/metabolismo , Modelos Animales de Enfermedad , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Metiltransferasas/metabolismo , Ratones , Fuerza Muscular/genética , Músculo Esquelético/metabolismo , Mutación , Miotonía Congénita/tratamiento farmacológico , Miotonía Congénita/genética , Calidad de Vida , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
6.
J Vis Exp ; (172)2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34180878

RESUMEN

More than 700 variants in the RYR1 gene have been identified in patients with different neuromuscular disorders including malignant hyperthermia susceptibility, core myopathies and centronuclear myopathy. Because of the diverse phenotypes linked to RYR1 mutations it is fundamental to characterize their functional effects to classify variants carried by patients for future therapeutic interventions and identify non-pathogenic variants. Many laboratories have been interested in developing methods to functionally characterize RYR1 mutations expressed in patients' cells. This approach has numerous advantages, including: mutations are endogenously expressed, RyR1 is not over-expressed, use of heterologous RyR1 expressing cells is avoided. However, since patients may present mutations in different genes aside RYR1, it is important to compare results from biological material from individuals harboring the same mutation, with different genetic backgrounds. The present manuscript describes methods developed to study the functional effects of endogenously expressed RYR1 variants in: (a) Epstein Barr virus immortalized human B-lymphocytes and (b) satellite cells derived from muscle biopsies and differentiated into myotubes. Changes in the intracellular calcium concentration triggered by the addition of a pharmacological RyR1 activators are then monitored. The selected cell type is loaded with a ratiometric fluorescent calcium indicator and intracellular [Ca2+] changes are monitored either at the single cell level by fluorescence microscopy or in cell populations using a spectrofluorometer. The resting [Ca2+], agonist dose response curves are then compared between cells from healthy controls and patients harboring RYR1 variants leading to insight into the functional effect of a given variant.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Hipertermia Maligna , Enfermedades Musculares , Canal Liberador de Calcio Receptor de Rianodina , Calcio/metabolismo , Herpesvirus Humano 4/metabolismo , Humanos , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética
7.
iScience ; 24(3): 102129, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33665552

RESUMEN

The precise spatiotemporal characteristics of subcellular calcium (Ca2+) transients are critical for the physiological processes. Here we report a green Ca2+ sensor called "G-CatchER+" using a protein design to report rapid local ER Ca2+ dynamics with significantly improved folding properties. G-CatchER+ exhibits a superior Ca2+ on rate to G-CEPIA1er and has a Ca2+-induced fluorescence lifetimes increase. G-CatchER+ also reports agonist/antagonist triggered Ca2+ dynamics in several cell types including primary neurons that are orchestrated by IP3Rs, RyRs, and SERCAs with an ability to differentiate expression. Upon localization to the lumen of the RyR channel (G-CatchER+-JP45), we report a rapid local Ca2+ release that is likely due to calsequestrin. Transgenic expression of G-CatchER+ in Drosophila muscle demonstrates its utility as an in vivo reporter of stimulus-evoked SR local Ca2+ dynamics. G-CatchER+ will be an invaluable tool to examine local ER/SR Ca2+ dynamics and facilitate drug development associated with ER dysfunction.

8.
J Biol Chem ; 295(30): 10331-10339, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32499372

RESUMEN

Mutations in the ryanodine receptor 1 (RYR1) gene are associated with several human congenital myopathies, including the dominantly inherited central core disease and exercise-induced rhabdomyolysis, and the more severe recessive phenotypes, including multiminicore disease, centronuclear myopathy, and congenital fiber type disproportion. Within the latter group, those carrying a hypomorphic mutation in one allele and a missense mutation in the other are the most severely affected. Because of nonsense-mediated decay, most hypomorphic alleles are not expressed, resulting in homozygous expression of the missense mutation allele. This should result in 50% reduced expression of the ryanodine receptor in skeletal muscle, but its observed content is even lower. To study in more detail the biochemistry and pathophysiology of recessive RYR1 myopathies, here we investigated a mouse model we recently generated by analyzing the effect of bi-allelic versus mono-allelic expression of the RyR1 p.A4329D mutation. Our results revealed that the expression of two alleles carrying the same mutation or of one allele with the mutation in combination with a hypomorphic allele does not result in functionally equal outcomes and impacts skeletal muscles differently. In particular, the bi-allelic RyR1 p.A4329D mutation caused a milder phenotype than its mono-allelic expression, leading to changes in the biochemical properties and physiological function only of slow-twitch muscles and largely sparing fast-twitch muscles. In summary, bi-allelic expression of the RyR1 p.A4329D mutation phenotypically differs from mono-allelic expression of this mutation in a compound heterozygous carrier.


Asunto(s)
Regulación de la Expresión Génica , Fibras Musculares de Contracción Lenta/metabolismo , Fuerza Muscular , Mutación Missense , Canal Liberador de Calcio Receptor de Rianodina/biosíntesis , Sustitución de Aminoácidos , Animales , Masculino , Ratones , Ratones Mutantes , Canal Liberador de Calcio Receptor de Rianodina/genética
9.
Hum Mol Genet ; 29(8): 1330-1339, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32242214

RESUMEN

Mutations in the RYR1 gene are the most common cause of human congenital myopathies, and patients with recessive mutations are severely affected and often display ptosis and/or ophthalmoplegia. In order to gain insight into the mechanism leading to extraocular muscle (EOM) involvement, we investigated the biochemical, structural and physiological properties of eye muscles from mouse models we created knocked-in for Ryr1 mutations. Ex vivo force production in EOMs from compound heterozygous RyR1p.Q1970fsX16+p.A4329D mutant mice was significantly reduced compared with that observed in wild-type, single heterozygous mutant carriers or homozygous RyR1p.A4329D mice. The decrease in muscle force was also accompanied by approximately a 40% reduction in RyR1 protein content, a decrease in electrically evoked calcium transients, disorganization of the muscle ultrastructure and a decrease in the number of calcium release units. Unexpectedly, the superfast and ocular-muscle-specific myosin heavy chain-EO isoform was almost undetectable in RyR1p.Q1970fsX16+p.A4329D mutant mice. The results of this study show for the first time that the EOM phenotype caused by the RyR1p.Q1970fsX16+p.A4329D compound heterozygous Ryr1 mutations is complex and due to a combination of modifications including a direct effect on the macromolecular complex involved in calcium release and indirect effects on the expression of myosin heavy chain isoforms.


Asunto(s)
Debilidad Muscular/genética , Cadenas Pesadas de Miosina/genética , Miotonía Congénita/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Modelos Animales de Enfermedad , Heterocigoto , Humanos , Ratones , Debilidad Muscular/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutación/genética , Miotonía Congénita/patología , Músculos Oculomotores/metabolismo , Músculos Oculomotores/patología , Fenotipo
10.
Hum Mol Genet ; 28(18): 2987-2999, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31044239

RESUMEN

Recessive ryanodine receptor 1 (RYR1) mutations cause congenital myopathies including multiminicore disease (MmD), congenital fiber-type disproportion and centronuclear myopathy. We created a mouse model knocked-in for the Q1970fsX16+A4329D RYR1 mutations, which are isogenic with those identified in a severely affected child with MmD. During the first 20 weeks after birth the body weight and the spontaneous running distance of the mutant mice were 20% and 50% lower compared to wild-type littermates. Skeletal muscles from mutant mice contained 'cores' characterized by severe myofibrillar disorganization associated with misplacement of mitochondria. Furthermore, their muscles developed less force and had smaller electrically evoked calcium transients. Mutant RyR1 channels incorporated into lipid bilayers were less sensitive to calcium and caffeine, but no change in single-channel conductance was observed. Our results demonstrate that the phenotype of the RyR1Q1970fsX16+A4329D compound heterozygous mice recapitulates the clinical picture of multiminicore patients and provide evidence of the molecular mechanisms responsible for skeletal muscle defects.


Asunto(s)
Calcio/metabolismo , Fuerza Muscular/genética , Músculo Esquelético/metabolismo , Mutación , Miopatía del Núcleo Central/etiología , Miopatía del Núcleo Central/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Alelos , Animales , Señalización del Calcio , Modelos Animales de Enfermedad , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Heterocigoto , Masculino , Ratones , Ratones Noqueados , Actividad Motora , Músculo Esquelético/fisiopatología , Músculo Esquelético/ultraestructura , Miopatía del Núcleo Central/fisiopatología , Fenotipo
11.
J Gen Physiol ; 151(7): 929-943, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31085573

RESUMEN

Calcium is an ubiquitous second messenger mediating numerous physiological processes, including muscle contraction and neuronal excitability. Ca2+ is stored in the ER/SR and is released into the cytoplasm via the opening of intracellular inositol trisphosphate receptor and ryanodine receptor calcium channels. Whereas in skeletal muscle, isoform 1 of the RYR is the main channel mediating calcium release from the SR leading to muscle contraction, the function of ubiquitously expressed ryanodine receptor 3 (RYR3) is far from clear; it is not known whether RYR3 plays a role in excitation-contraction coupling. We recently reported that human extraocular muscles express high levels of RYR3, suggesting that such muscles may be useful to study the function of this isoform of the Ca2+ channel. In the present investigation, we characterize the visual function of ryr3-/- mice. We observe that ablation of RYR3 affects both mechanical properties and calcium homeostasis in extraocular muscles. These changes significantly impact vision. Our results reveal for the first time an important role for RYR3 in extraocular muscle function.


Asunto(s)
Músculos Oculomotores/fisiología , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Señalización del Calcio , Células Cultivadas , Femenino , Masculino , Ratones , Contracción Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculos Oculomotores/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Visión Ocular , Agudeza Visual
12.
Hum Mutat ; 40(7): 962-974, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30932294

RESUMEN

Congenital myopathies are early onset, slowly progressive neuromuscular disorders of variable severity. They are genetically and phenotypically heterogeneous and caused by pathogenic variants in several genes. Multi-minicore Disease, one of the more common congenital myopathies, is frequently caused by recessive variants in either SELENON, encoding the endoplasmic reticulum glycoprotein selenoprotein N or RYR1, encoding a protein involved in calcium homeostasis and excitation-contraction coupling. The mechanism by which recessive SELENON variants cause Multiminicore disease (MmD) is unclear. Here, we extensively investigated muscle physiological, biochemical and epigenetic modifications, including DNA methylation, histone modification, and noncoding RNA expression, to understand the pathomechanism of MmD. We identified biochemical changes that are common in patients harboring recessive RYR1 and SELENON variants, including depletion of transcripts encoding proteins involved in skeletal muscle calcium homeostasis, increased levels of Class II histone deacetylases (HDACs) and DNA methyltransferases. CpG methylation analysis of genomic DNA of patients with RYR1 and SELENON variants identified >3,500 common aberrantly methylated genes, many of which are involved in calcium signaling. These results provide the proof of concept for the potential use of drugs targeting HDACs and DNA methyltransferases to treat patients with specific forms of congenital myopathies.


Asunto(s)
Metilación de ADN , Proteínas Musculares/genética , Enfermedades Musculares/congénito , Enfermedades Musculares/genética , Selenoproteínas/genética , Adolescente , Células Cultivadas , Niño , Preescolar , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/genética , Epigénesis Genética , Código de Histonas , Histona Desacetilasas/genética , Humanos , Canal Liberador de Calcio Receptor de Rianodina/genética , Secuenciación Completa del Genoma
13.
Hum Mol Genet ; 28(11): 1872-1884, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30689883

RESUMEN

Here we characterized a mouse model knocked-in for a frameshift mutation in RYR1 exon 36 (p.Gln1970fsX16) that is isogenic to that identified in one parent of a severely affected patient with recessively inherited multiminicore disease. This individual carrying the RYR1 frameshifting mutation complained of mild muscle weakness and fatigability. Analysis of the RyR1 protein content in a muscle biopsy from this individual showed a content of only 20% of that present in a control individual. The biochemical and physiological characteristics of skeletal muscles from RyR1Q1970fsX16 heterozygous mice recapitulates that of the heterozygous parent. RyR1 protein content in the muscles of mutant mice reached 38% and 58% of that present in total muscle homogenates of fast and slow muscles from wild-type (WT) littermates. The decrease of RyR1 protein content in total homogenates is not accompanied by a decrease of Cav1.1 content, whereby the Cav1.1/RyR1 stoichiometry ratio in skeletal muscles from RyR1Q1970fsX16 heterozygous mice is lower compared to that from WT mice. Electron microscopy (EM) revealed a 36% reduction in the number/area of calcium release units accompanied by a 2.5-fold increase of dyads (triads that have lost one junctional sarcoplasmic reticulum element); both results suggest a reduction of the RyR1 arrays. Compared to WT, muscle strength and depolarization-induced calcium transients in RyR1Q1970fsX16 heterozygous mice muscles were decreased by 20% and 15%, respectively. The RyR1Q1970fsX16 mouse model provides mechanistic insight concerning the phenotype of the parent carrying the RYR1 ex36 mutation and suggests that in skeletal muscle fibres there is a functional reserve of RyR1.


Asunto(s)
Canales de Calcio Tipo L/genética , Debilidad Muscular/genética , Miopatías Estructurales Congénitas/genética , Oftalmoplejía/genética , Canal Liberador de Calcio Receptor de Rianodina/deficiencia , Adulto , Alelos , Animales , Modelos Animales de Enfermedad , Mutación del Sistema de Lectura/genética , Heterocigoto , Humanos , Ratones , Microscopía Electrónica , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/ultraestructura , Debilidad Muscular/patología , Miopatías Estructurales Congénitas/fisiopatología , Oftalmoplejía/fisiopatología , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/ultraestructura
14.
Nat Rev Neurol ; 14(3): 151-167, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29391587

RESUMEN

The congenital myopathies are a group of early-onset, non-dystrophic neuromuscular conditions with characteristic muscle biopsy findings, variable severity and a stable or slowly progressive course. Pronounced weakness in axial and proximal muscle groups is a common feature, and involvement of extraocular, cardiorespiratory and/or distal muscles can implicate specific genetic defects. Central core disease (CCD), multi-minicore disease (MmD), centronuclear myopathy (CNM) and nemaline myopathy were among the first congenital myopathies to be reported, and they still represent the main diagnostic categories. However, these entities seem to belong to a much wider phenotypic spectrum. To date, congenital myopathies have been attributed to mutations in over 20 genes, which encode proteins implicated in skeletal muscle Ca2+ homeostasis, excitation-contraction coupling, thin-thick filament assembly and interactions, and other mechanisms. RYR1 mutations are the most frequent genetic cause, and CCD and MmD are the most common subgroups. Next-generation sequencing has vastly improved mutation detection and has enabled the identification of novel genetic backgrounds. At present, management of congenital myopathies is largely supportive, although new therapeutic approaches are reaching the clinical trial stage.


Asunto(s)
Acoplamiento Excitación-Contracción/fisiología , Contracción Muscular/fisiología , Miopatías Estructurales Congénitas , Humanos , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/patología , Miopatías Estructurales Congénitas/fisiopatología , Miopatías Estructurales Congénitas/terapia
15.
Sci Rep ; 8(1): 636, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29330505

RESUMEN

SRP-35 is a short-chain dehydrogenase/reductase belonging to the DHRS7C dehydrogenase/ reductase family 7. Here we show that its over-expression in mouse skeletal muscles induces enhanced muscle performance in vivo, which is not related to alterations in excitation-contraction coupling but rather linked to enhanced glucose metabolism. Over-expression of SRP-35 causes increased phosphorylation of AktS473, triggering plasmalemmal targeting of GLUT4 and higher glucose uptake into muscles. SRP-35 signaling involves RARα and RARγ (non-genomic effect), PI3K and mTORC2. We also demonstrate that all-trans retinoic acid, a downstream product of the enzymatic activity of SRP-35, mimics the effect of SRP-35 in skeletal muscle, inducing a synergistic effect with insulin on AKTS473 phosphorylation. These results indicate that SRP-35 affects skeletal muscle metabolism and may represent an important target for the treatment of metabolic diseases.


Asunto(s)
Glucosa/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Músculo Esquelético/fisiología , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Animales , Expresión Génica , Transportador de Glucosa de Tipo 4/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Transgénicos , Fosforilación , Receptores de Ácido Retinoico , Receptor alfa de Ácido Retinoico/metabolismo
16.
Hum Mol Genet ; 26(2): 320-332, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-28007904

RESUMEN

Centronuclear myopathies are early-onset muscle diseases caused by mutations in several genes including MTM1, DNM2, BIN1, RYR1 and TTN. The most severe and often fatal X-linked form of myotubular myopathy (XLMTM) is caused by mutations in the gene encoding the ubiquitous lipid phosphatase myotubularin, an enzyme specifically dephosphorylating phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate. Because XLMTM patients have a predominantly muscle-specific phenotype a number of pathogenic mechanisms have been proposed, including a direct effect of the accumulated lipid on the skeletal muscle calcium channel ryanodine receptor 1, a negative effect on the structure of intracellular organelles and defective autophagy. Animal models knocked out for MTM1 show severe reduction of ryanodine receptor 1 mediated calcium release but, since knocking out genes in animal models does not necessarily replicate the human phenotype, we considered it important to study directly the effect of MTM1 mutations on patient muscle cells. The results of the present study show that at the level of myotubes MTM1 mutations do not dramatically affect calcium homeostasis and calcium release mediated through the ryanodine receptor 1, though they do affect myotube size and nuclear content. On the other hand, mature muscles such as those obtained from patient muscle biopsies exhibit a significant decrease in expression of the ryanodine receptor 1, a decrease in muscle-specific microRNAs and a considerable up-regulation of histone deacetylase-4. We hypothesize that the latter events consequent to the primary genetic mutation, are the cause of the severe decrease in muscle strength that characterizes these patients.


Asunto(s)
Histona Desacetilasas/genética , Músculo Esquelético/metabolismo , Miopatías Estructurales Congénitas/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Represoras/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Biopsia , Calcio/metabolismo , Niño , Preescolar , Femenino , Regulación de la Expresión Génica , Histona Desacetilasas/biosíntesis , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Músculo Esquelético/patología , Mutación , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/patología , Proteínas Represoras/biosíntesis , Canal Liberador de Calcio Receptor de Rianodina/biosíntesis , Pez Cebra
17.
Acta Neuropathol ; 133(4): 517-533, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28012042

RESUMEN

Muscle contraction upon nerve stimulation relies on excitation-contraction coupling (ECC) to promote the rapid and generalized release of calcium within myofibers. In skeletal muscle, ECC is performed by the direct coupling of a voltage-gated L-type Ca2+ channel (dihydropyridine receptor; DHPR) located on the T-tubule with a Ca2+ release channel (ryanodine receptor; RYR1) on the sarcoplasmic reticulum (SR) component of the triad. Here, we characterize a novel class of congenital myopathy at the morphological, molecular, and functional levels. We describe a cohort of 11 patients from 7 families presenting with perinatal hypotonia, severe axial and generalized weakness. Ophthalmoplegia is present in four patients. The analysis of muscle biopsies demonstrated a characteristic intermyofibrillar network due to SR dilatation, internal nuclei, and areas of myofibrillar disorganization in some samples. Exome sequencing revealed ten recessive or dominant mutations in CACNA1S (Cav1.1), the pore-forming subunit of DHPR in skeletal muscle. Both recessive and dominant mutations correlated with a consistent phenotype, a decrease in protein level, and with a major impairment of Ca2+ release induced by depolarization in cultured myotubes. While dominant CACNA1S mutations were previously linked to malignant hyperthermia susceptibility or hypokalemic periodic paralysis, our findings strengthen the importance of DHPR for perinatal muscle function in human. These data also highlight CACNA1S and ECC as therapeutic targets for the development of treatments that may be facilitated by the previous knowledge accumulated on DHPR.


Asunto(s)
Canales de Calcio/genética , Canales de Calcio/metabolismo , Miotonía Congénita/genética , Miotonía Congénita/metabolismo , Adolescente , Adulto , Calcio/metabolismo , Canales de Calcio Tipo L , Células Cultivadas , Niño , Estudios de Cohortes , Familia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Células Musculares/metabolismo , Células Musculares/patología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutación , Miotonía Congénita/diagnóstico por imagen , Miotonía Congénita/patología , Fenotipo , Homología de Secuencia de Aminoácido , Adulto Joven
18.
Semin Cell Dev Biol ; 64: 201-212, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27427513

RESUMEN

The physiological process by which Ca2+ is released from the sarcoplasmic reticulum is called excitation-contraction coupling; it is initiated by an action potential which travels deep into the muscle fiber where it is sensed by the dihydropyridine receptor, a voltage sensing L-type Ca2+channel localized on the transverse tubules. Voltage-induced conformational changes in the dihydropyridine receptor activate the ryanodine receptor Ca2+ release channel of the sarcoplasmic reticulum. The released Ca2+ binds to troponin C, enabling contractile thick-thin filament interactions. The Ca2+ is subsequently transported back into the sarcoplasmic reticulum by specialized Ca2+ pumps (SERCA), preparing the muscle for a new cycle of contraction. Although other proteins are involved in excitation-contraction coupling, the mechanism described above emphasizes the unique role played by the two Ca2+ channels (the dihydropyridine receptor and the ryanodine receptor), the SERCA Ca2+ pumps and the exquisite spatial organization of the membrane compartments endowed with the proteins responsible for this mechanism to function rapidly and efficiently. Research over the past two decades has uncovered the fine details of excitation-contraction coupling under normal conditions while advances in genomics have helped to identify mutations in novel genes in patients with neuromuscular disorders. While it is now clear that many patients with congenital muscle diseases carry mutations in genes encoding proteins directly involved in Ca2+ homeostasis, it has become apparent that mutations are also present in genes encoding for proteins not thought to be directly involved in Ca2+ regulation. Ongoing research in the field now focuses on understanding the functional effect of individual mutations, as well as understanding the role of proteins not specifically located in the sarcoplasmic reticulum which nevertheless are involved in Ca2+ regulation or excitation-contraction coupling. The principal challenge for the future is the identification of drug targets that can be pharmacologically manipulated by small molecules, with the ultimate aim to improve muscle function and quality of life of patients with congenital muscle disorders. The aim of this review is to give an overview of the most recent findings concerning Ca2+ dysregulation and its impact on muscle function in patients with congenital muscle disorders due to mutations in proteins involved in excitation-contraction coupling and more broadly on Ca2+ homeostasis.


Asunto(s)
Señalización del Calcio , Enfermedades Musculares/metabolismo , Edad de Inicio , Animales , Calcio/metabolismo , Humanos , Modelos Biológicos , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Mutación/genética , Retículo Sarcoplasmático/metabolismo
20.
Sci Signal ; 9(435): ra68, 2016 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-27382027

RESUMEN

Malignant hyperthermia is a potentially fatal hypermetabolic disorder triggered by halogenated anesthetics and the myorelaxant succinylcholine in genetically predisposed individuals. About 50% of susceptible individuals carry dominant, gain-of-function mutations in RYR1 [which encodes ryanodine receptor type 1 (RyR1)], though they have normal muscle function and no overt clinical symptoms. RyR1 is predominantly found in skeletal muscle but also at lower amounts in immune and smooth muscle cells, suggesting that RYR1 mutations may have a wider range of effects than previously suspected. Mild bleeding abnormalities have been described in patients with malignant hyperthermia carrying gain-of-function RYR1 mutations. We sought to determine the frequency and molecular basis for this symptom. We found that some patients with specific RYR1 mutations had abnormally high bleeding scores, whereas their healthy relatives did not. Knock-in mice with the malignant hyperthermia susceptibility RYR1 mutation Y522S (MHS RYR1Y522S) had longer bleeding times than their wild-type littermates. Primary vascular smooth muscle cells from RYR1Y522S knock-in mice exhibited a higher frequency of subplasmalemmal Ca(2+) sparks, leading to a more negative resting membrane potential. The bleeding defect of RYR1Y522S mice and of one patient was reversed by treatment with the RYR1 antagonist dantrolene, and Ca(2+) sparks in primary vascular smooth muscle cells from the MHS RYR1Y522S mice were blocked by ryanodine or dantrolene. Thus, RYR1 mutations may lead to prolonged bleeding by altering vascular smooth muscle cell function. The reversibility of the bleeding phenotype emphasizes the potential therapeutic value of dantrolene in the treatment of such bleeding disorders.


Asunto(s)
Trastornos de la Coagulación Sanguínea/metabolismo , Señalización del Calcio , Hipertermia Maligna/metabolismo , Músculo Liso Vascular/metabolismo , Mutación Missense , Miocitos del Músculo Liso/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sustitución de Aminoácidos , Animales , Trastornos de la Coagulación Sanguínea/genética , Trastornos de la Coagulación Sanguínea/patología , Dantroleno/farmacología , Femenino , Humanos , Masculino , Hipertermia Maligna/genética , Hipertermia Maligna/patología , Ratones , Ratones Mutantes , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Canal Liberador de Calcio Receptor de Rianodina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA