Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Proc Biol Sci ; 290(1998): 20222325, 2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37161328

RESUMEN

Birds encompass vast ecomorphological diversity and practise numerous distinct locomotor modes. One oft-cited feature seen in climbing birds is an increase in tail 'stiffness', yet it remains unclear to what extent these feathers are altered, and the specific mechanism by which differences in functional performance are attained. We collected a broad taxonomic sample of tail feathers (6525 total, from 774 species representing 21 avian orders and ranging in size from approximately 3 g to greater than 11 kg) and present data on their material properties, cross-sectional geometry and morphometrics. Ordinary and phylogenetic least-squares regressions of each variable versus body mass were conducted to assess scaling relationships and demonstrate that tail-supported climbers exhibit longer tail feathers with a wider rachis base and tip, and a greater second moment of area and maximum bending moment. However, no differences were observed in the material properties of the keratin itself. This suggests that tail-supported arboreal climbing birds of multiple orders have independently adopted similar morphologies. Moreover, these geometric relationships follow the same allometric scaling relationships as seen in the long bones of mammalian limbs, suggesting that the morphology of these developmentally and evolutionarily distinct structures are governed by similar functional constraints of weight support.


Asunto(s)
Aves , Plumas , Animales , Filogenia , Citoesqueleto , Extremidades , Mamíferos
2.
Animals (Basel) ; 12(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36139232

RESUMEN

Positional behaviors have been broadly quantified across the Order Primates, and in several other mammalian lineages, to contextualize adaptations to, and evolution within, an arboreal environment. Outside of Mammalia, however, such data are yet to be reported. In this study, we present the first quantitative report of positional behavior within Aves, presenting 11,246 observations of scan sampling data from a colony of Monk Parakeets (Myiopsitta monachus) from Brooklyn, New York City. Each scan recorded locomotor and postural behavior and information about weather condition, temperature, and substrate properties (e.g., type, size, orientation). A distinction was also recorded between natural and artificial substrates. Parrots exhibited a strong preference for small and terminal branches, a selection which may reflect targeted foraging of new fruit growth and leaf-buds. We further observed that the gait transition from walking to sidling appears primarily driven by substrate size, with the former preferred on the ground and on large, broad substrates and the latter used to navigate smaller branches. Finally, we observed an increase in locomotor diversity on artificial versus naturally occurring substrates. This demonstrates the importance of a flexible behavioral repertoire in facilitating a successful transition towards an urban landscape in introduced species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...