Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 211: 108677, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703499

RESUMEN

Phosphorus (P) plays a crucial role in facilitating plant adaptation to cadmium (Cd) stress. However, the molecular mechanisms underlying P-mediated responses to Cd stress in roots remain elusive. This study investigates the effects of P on the growth, physiology, transcriptome, and metabolome of Salix caprea under Cd stress. The results indicate that Cd significantly inhibits plant growth, while sufficient P alleviates this inhibition. Under Cd exposure, P sufficiency resulted in increased Cd accumulation in roots, along with reduced oxidative stress levels (superoxide anion and hydrogen peroxide contents were reduced by 16.8% and 30.1%, respectively). This phenomenon can be attributed to the enhanced activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), as well as increased levels of antioxidants including ascorbic acid (AsA) and flavonoids under sufficient P conditions. A total of 4208 differentially expressed genes (DEGs) and 552 differentially accumulated metabolites (DAMs) were identified in the transcriptomic and metabolomic analyses, with 2596 DEGs and 113 DAMs identified among treatments with different P levels under Cd stress, respectively. Further combined analyses reveal the potential roles of several pathways in P-mediated Cd detoxification, including flavonoid biosynthesis, ascorbate biosynthesis, and plant hormone signal transduction pathways. Notably, sufficient P upregulates the expression of genes including HMA, ZIP, NRAMP and CAX, all predicted to localize to the cell membrane. This may elucidate the heightened Cd accumulation under sufficient P conditions. These findings provide insights into the roles of P in enhancing plant resistance to Cd stress and improving of phytoremediation.


Asunto(s)
Cadmio , Fósforo , Raíces de Plantas , Salix , Transcriptoma , Cadmio/metabolismo , Cadmio/toxicidad , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Fósforo/metabolismo , Salix/metabolismo , Salix/genética , Salix/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metabolómica , Estrés Oxidativo/efectos de los fármacos , Metaboloma/efectos de los fármacos , Antioxidantes/metabolismo , Perfilación de la Expresión Génica
2.
J Environ Manage ; 357: 120691, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38554452

RESUMEN

Regions affected by heavy metal contamination frequently encounter phosphorus (P) deficiency. Numerous studies highlight crucial role of P in facilitating cadmium (Cd) accumulation in woody plants. However, the regulatory mechanism by which P affects Cd accumulation in roots remains ambiguous. This study aims to investigate the effects of phosphorus (P) deficiency on Cd accumulation, Cd subcellular distribution, and cell wall components in the roots of Salix caprea under Cd stress. The results revealed that under P deficiency conditions, there was a 35.4% elevation in Cd content in roots, coupled with a 60.1% reduction in Cd content in shoots, compared to the P sufficiency conditions. Under deficient P conditions, the predominant response of roots to Cd exposure was the increased sequestration of Cd in root cell walls. The sequestration of Cd in root cell walls increased from 37.1% under sufficient P conditions to 66.7% under P deficiency, with pectin identified as the primary Cd binding site under both P conditions. Among cell wall components, P deficiency led to a significant 31.7% increase in Cd content within pectin compared to P sufficiency conditions, but did not change the pectin content. Notably, P deficiency significantly increased pectin methylesterase (PME) activity by regulating the expression of PME and PMEI genes, leading to a 10.4% reduction in the degree of pectin methylesterification. This may elucidate the absence of significant changes in pectin content under P deficiency conditions and the concurrent increase in Cd accumulation in pectin. Fourier transform infrared spectroscopy (FTIR) results indicated an increase in carboxyl groups in the root cell walls under P deficiency compared to sufficient P treatment. The results provide deep insights into the mechanisms of higher Cd accumulation in root mediated by P deficiency.


Asunto(s)
Pectinas , Salix , Pectinas/química , Pectinas/metabolismo , Pectinas/farmacología , Cadmio/metabolismo , Salix/metabolismo , Raíces de Plantas/química , Pared Celular/metabolismo , Fósforo/análisis
3.
New Phytol ; 238(6): 2512-2523, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36866707

RESUMEN

The Salicaceae, including Populus and Salix, are dioecious perennials that utilize different sex determination systems. This family provides a useful system to better understand the evolution of dioecy and sex chromosomes. Here, a rare monoecious genotype of Salix purpurea, 94003, was self- and cross-pollinated and progeny sex ratios were used to test hypotheses on possible mechanisms of sex determination. To delimit genomic regions associated with monoecious expression, the 94003 genome sequence was assembled and DNA- and RNA-Seq of progeny inflorescences was performed. Based on alignments of progeny shotgun DNA sequences to the haplotype-resolved monoecious 94003 genome assembly and reference male and female genomes, a 1.15 Mb sex-linked region on Chr15W was confirmed to be absent in monecious plants. Inheritance of this structural variation is responsible for the loss of a male-suppressing function in what would otherwise be genetic females (ZW), resulting in monoecy (ZWH or WWH ), or lethality, if homozygous (WH WH ). We present a refined, two-gene sex determination model for Salix purpurea, mediated by ARR17 and GATA15 that is different from the single-gene ARR17-mediated system in the related genus Populus.


Asunto(s)
Populus , Salix , Salix/genética , Populus/genética , Genotipo , Haplotipos/genética , Cromosomas Sexuales
4.
Ecotoxicol Environ Saf ; 249: 114461, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38321680

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are well known persistent organic pollutants that have carcinogenic, teratogenic, and mutagenic effects on humans and animals. Arbuscular mycorrhizal fungi (AMF) that can infest plant hosts and form symbioses may help plants to enhance potential rhizosphere effects, thus contributing to the rhizodegradation of PAH-contaminated soils. The present study aimed to assess the effectiveness of AMF on enhancing Salix viminalis-mediated phytoremediation of PAH-polluted soil and clarify the plant enzymatic and organic acid mechanisms induced by AMF. Natural attenuation (NA), phytoremediation (P, Salix viminalis), S. viminalis-AMF combined remediation using willow inoculated with Funneliformis mosseae (PM), Laroideoglomus etunicatum (PE), and Rhizophagus intraradices (PI) were used as strategies for the remediation of PAH-polluted soils. The results showed that AMF inoculation contributed to the dissipation of the high-molecular-weight PAH benzo (α) pyrene that had concentrations in PM, PE, and PI treatments of 40.1 %, 24.49 %, and 36.28 % of the level in the NA treatment, and 62.32 %, 38.05 %, and 56.38 % of the level in the P treatment after 90 days. The mycorrhizal treatment also improved the removal efficiency of phenanthrene and pyrene, as their concentrations were sharply decreased after 30 days compared to the NA and P treatments. The research further clarified the changes in rhizosphere substances induced by AMF. Organic acids including arachidonic acid, octadecanedioic acid, α-linolenic acid, 10,12,14-octadecarachidonic acid and 5-methoxysalicylic acid that can act as co-metabolic substrates for certain microbial species to metabolize PAHs were significantly increased in AMF-inoculated treatments. AMF inoculation also elevated the levels of polyphenol oxidase, laccase, and dehydrogenase, that played crucial roles in PAHs biodegradation. These findings provide an effective strategy for using AMF-assisted S. viminalis to remediate PAH-polluted soils, and the results have confirmed the key roles of organic acids and soil enzymes in plant-AMF combined remediation of PAHs.


Asunto(s)
Micorrizas , Hidrocarburos Policíclicos Aromáticos , Salix , Contaminantes del Suelo , Animales , Humanos , Micorrizas/metabolismo , Hidrocarburos Policíclicos Aromáticos/análisis , Biodegradación Ambiental , Salix/metabolismo , Suelo , Pirenos/metabolismo , Contaminantes del Suelo/análisis , Raíces de Plantas/metabolismo
5.
Am J Bot ; 108(8): 1374-1387, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34406658

RESUMEN

PREMISE: The evolution of sex chromosomes is driven by sexual dimorphism, yet it can be challenging to document sexually dimorphic traits in dioecious plant species. At the genetic level, sexual dimorphism can be identified through sequence variation between females and males associated with sexually antagonistic traits and different fitness optima. This study aims to examine sexual dimorphism for 26 traits in three populations of Salix purpurea (a diversity panel and F1 and F2 populations) and determine the effect of the traits on biomass yield, a key trait in Salix bioenergy crops across multiple years, locations, and under manipulated growth conditions. METHODS: Sexual dimorphism was evaluated for morphological, phenological, physiological, and wood composition traits in a diversity panel of unrelated S. purpurea accessions and in full-sib F1 and F2 families produced through controlled cross pollinations and grown in replicated field trials. RESULTS: We observed sexual dimorphism in the timing of development for several traits that were highly predictive of biomass yield across three populations of S. purpurea. Across all populations and years surveyed, males had significantly shallower branching angle. Male plants highly predictive of biomass yield across three populations of S. purpurea also accumulated more nitrogen under fertilizer amendment as measured by SPAD in the diversity panel and had greater susceptibility to the rust fungus Melampsora americana in the F2 family. Allometric modelling of biomass yield showed an effect of sex and of location on the interaction between yield and stem height. CONCLUSIONS: These results provide evidence of sexual dimorphism for certain traits in S. purpurea that may be involved in sex chromosome evolution.


Asunto(s)
Basidiomycota , Salix , Basidiomycota/genética , Salix/genética , Caracteres Sexuales , Cromosomas Sexuales
6.
Int J Phytoremediation ; 23(14): 1466-1475, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34033508

RESUMEN

NOVELTY STATEMENT: Salix viminalis, a dioecious shrub willow, has been widely used in phytoremediation, yet sexually differences in tolerance to cadmium of which remained unclear. This study focused on different responses to cadmium stress between roots of male and female S. viminalis. Results show that male plants of S. viminalis have stronger cadmium tolerance than female plants, which indicates male S. viminalis should be more considered to be applied for phytoremediation and ecological restoration of cadmium-accumulated soil considering cadmium tolerance characteristics. The findings can provide valuable evidence and insights for researches focused on phytoremediation with dioecious woody plants and sexual dimorphism under abiotic stress.


Asunto(s)
Salix , Contaminantes del Suelo , Antioxidantes , Biodegradación Ambiental , Cadmio/análisis , Cadmio/toxicidad , Raíces de Plantas/química , Contaminantes del Suelo/análisis
7.
Sci Total Environ ; 752: 142224, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33207520

RESUMEN

Despite combined plant/white-rot fungus remediation being effective for remediating polycyclic aromatic hydrocarbon (PAH)-contaminated soil, the complex organismal interactions and their effects on soil PAH degradation remain unclear. Here, we used quantitative PCR, analysis of soil enzyme activities, and sequencing of representative genes to characterize the ecological dynamics of natural attenuation, mycoremediation (MR, using Crucibulum laeve), phytoremediation (PR, using Salix viminalis), and plant-microbial remediation (PMR, using both species) for PAHs in soil for 60 days. On day 60, PMR achieved the highest removal efficiency of all three representative PAHs (65.5%, 47.5%, and 62.4% for phenanthrene, pyrene, and benzo(a)pyrene, respectively) when compared with the other treatments. MR significantly increased the relative abundance of Rhizobium and Bacillus but antagonized the other putative indigenous PAH-degrading bacteria, which were enriched by PR. PR significantly reduced soil nutrients, such as NO3- and NH4+, and available potassium (AK), thereby changing the microbial community composition as reflected by redundancy analysis, significantly reducing the soil bacterial biomass relative to that in other treatments. These disadvantages hampered phenanthrene and pyrene removal. MR provided additional nutrients, which counteracted the nutrient consumption associated with PR, thereby maintaining the microbial community diversity and bacterial biomass of PMR at a level achieved in the NA treatment. Combination remediation therefore overcame the disadvantages of using PR alone. These results indicated that inoculation with the combination of S. viminalis and C. laeve synergistically stimulated the growth of indigenous PAH-degrading microorganisms and maintained bacterial biomass, thus accelerating the dissipation of soil PAHs.


Asunto(s)
Microbiota , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
8.
Genes (Basel) ; 11(3)2020 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-32156087

RESUMEN

Methyl-CpG-binding domain (MBD) proteins have diverse molecular and biological functions in plants. Most studies of MBD proteins in plants have focused on the model plant Arabidopsis thaliana L. Here we cloned SvMBD5 from the willow Salix viminalis L. by reverse transcription-polymerase chain reaction (RT-PCR) and analyzed the structure of SvMBD5 and its evolutionary relationships with proteins in other species. The coding sequence of SvMBD5 is 645 bp long, encoding a 214 amino acid protein with a methyl-CpG-binding domain. SvMBD5 belongs to the same subfamily as AtMBD5 and AtMBD6 from Arabidopsis. Subcellular localization analysis showed that SvMBD5 is only expressed in the nucleus. We transformed Arabidopsis plants with a 35S::SvMBD5 expression construct to examine SvMBD5 function. The Arabidopsis SvMBD5-expressing line flowered earlier than the wild type. In the transgenic plants, the expression of FLOWERING LOCUS T and CONSTANS significantly increased, while the expression of FLOWERING LOCUS C greatly decreased. In addition, heterologously expressing SvMBD5 in Arabidopsis significantly inhibited the establishment and maintenance of methylation of CHROMOMETHYLASE 3 and METHYLTRANSFERASE 1, as well as their expression, and significantly increased the expression of the demethylation-related genes REPRESSOR OF SILENCING1 and DEMETER-LIKE PROTEIN3. Our findings suggest that SvMBD5 participates in the flowering process by regulating the methylation levels of flowering genes, laying the foundation for further studying the role of SvMBD5 in regulating DNA demethylation.


Asunto(s)
Arabidopsis/genética , Proteínas de Unión al ADN/genética , Flores/genética , Proteínas de Plantas/genética , Salix/genética , Transgenes , Arabidopsis/crecimiento & desarrollo , Proteínas de Unión al ADN/metabolismo , Flores/crecimiento & desarrollo , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA