Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
2.
Cell Death Dis ; 15(3): 212, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485719

RESUMEN

During the maturation of hematopoietic stem/progenitor cells (HSPCs) to fully differentiated mature B lymphocytes, developing lymphocytes may undergo malignant transformation and produce B-cell lymphomas. Emerging evidence shows that through the endothelial-hematopoietic transition, specialized endothelial cells called the hemogenic endothelium can differentiate into HSPCs. However, the contribution of genetic defects in hemogenic endothelial cells to B-cell lymphomagenesis has not yet been investigated. Here, we report that mice with endothelial cell-specific deletion of Fbw7 spontaneously developed diffuse large B-cell lymphoma (DLBCL) following Bcl6 accumulation. Using lineage tracing, we showed that B-cell lymphomas in Fbw7 knockout mice were hemogenic endothelium-derived. Mechanistically, we found that FBW7 directly interacted with Bcl6 and promoted its proteasomal degradation. FBW7 expression levels are inversely correlated with BCL6 expression. Additionally, pharmacological disruption of Bcl6 abolished Fbw7 deletion-induced B-cell lymphomagenesis. We conclude that selective deletion of E3 ubiquitin ligase FBW7 in VE-cadherin positive endothelial cells instigates diffuse large B-cell lymphoma via upregulation of BCL6 stability. In addition, the mice with endothelial cell-specific deletion of Fbw7 provide a valuable preclinical platform for in vivo development and evaluation of novel therapeutic interventions for the treatment of DLBCL.


Asunto(s)
Antígenos CD , Cadherinas , Linfoma de Células B Grandes Difuso , Ubiquitina-Proteína Ligasas , Animales , Ratones , Células Endoteliales/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Ratones Noqueados , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
Sci Rep ; 14(1): 1713, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242911

RESUMEN

Ketone bodies serve as an energy source, especially in the absence of carbohydrates or in the extended exercise. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a crucial energy sensor that regulates lipid and glucose metabolism. However, whether AMPK regulates ketone metabolism in whole body is unclear even though AMPK regulates ketogenesis in liver. Prolonged resulted in a significant increase in blood and urine levels of ketone bodies in wild-type (WT) mice. Interestingly, fasting AMPKα2-/- and AMPKα1-/- mice exhibited significantly higher levels of ketone bodies in both blood and urine compared to fasting WT mice. BHB tolerance assays revealed that both AMPKα2-/- and AMPKα1-/- mice exhibited slower ketone consumption compared to WT mice, as indicated by higher blood BHB or urine BHB levels in the AMPKα2-/- and AMPKα1-/- mice even after the peak. Interestingly, fasting AMPKα2-/- and AMPKα1-/- mice exhibited significantly higher levels of ketone bodies in both blood and urine compared to fasting WT mice. . Specifically, AMPKα2ΔMusc mice showed approximately a twofold increase in blood BHB levels, and AMPKα2ΔMyo mice exhibited a 1.5-fold increase compared to their WT littermates after a 48-h fasting. However, blood BHB levels in AMPKα1ΔMusc and AMPKα1ΔMyo mice were as same as in WT mice. Notably, AMPKα2ΔMusc mice demonstrated a slower rate of BHB consumption in the BHB tolerance assay, whereas AMPKα1ΔMusc mice did not show such an effect. Declining rates of body weights and blood glucoses were similar among all the mice. Protein levels of SCOT, the rate-limiting enzyme of ketolysis, decreased in skeletal muscle of AMPKα2-/- mice. Moreover, SCOT protein ubiquitination increased in C2C12 cells either transfected with kinase-dead AMPKα2 or subjected to AMPKα2 inhibition. AMPKα2 physiologically binds and stabilizes SCOT, which is dependent on AMPKα2 activity.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Cuerpos Cetónicos , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Ayuno , Cetonas , Ratones Noqueados , Ubiquitinación , Coenzima A Transferasas/metabolismo
4.
Autophagy ; 20(3): 629-644, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37963060

RESUMEN

PYCARD (PYD and CARD domain containing), a pivotal adaptor protein in inflammasome assembly and activation, contributes to innate immunity, and plays an essential role in the pathogenesis of atherosclerosis and restenosis. However, its roles in microRNA biogenesis remain unknown. Therefore, this study aimed to investigate the roles of PYCARD in miRNA biogenesis and neointima formation using pycard knockout (pycard-/-) mice. Deficiency of Pycard reduced circulating miRNA profile and inhibited Mir17 seed family maturation. The systemic pycard knockout also selectively reduced the expression of AGO2 (argonaute RISC catalytic subunit 2), an important enzyme in regulating miRNA biogenesis, by promoting chaperone-mediated autophagy (CMA)-mediated degradation of AGO2, specifically in adipose tissue. Mechanistically, pycard knockout increased PRMT8 (protein arginine N-methyltransferase 8) expression in adipose tissue, which enhanced AGO2 methylation, and subsequently promoted its binding to HSPA8 (heat shock protein family A (Hsp70) member 8) that targeted AGO2 for lysosome degradation through chaperone-mediated autophagy. Finally, the reduction of AGO2 and Mir17 family expression prevented vascular injury-induced neointima formation in Pycard-deficient conditions. Overexpression of AGO2 or administration of mimic of Mir106b (a major member of the Mir17 family) prevented Pycard deficiency-mediated inhibition of neointima formation in response to vascular injury. These data demonstrate that PYCARD inhibits CMA-mediated degradation of AGO2, which promotes microRNA maturation, thereby playing a critical role in regulating neointima formation in response to vascular injury independently of inflammasome activity and suggest that modulating PYCARD expression and function may represent a powerful therapeutic strategy for neointima formation.Abbreviations: 6-AN: 6-aminonicotinamide; ACTB: actin, beta; aDMA: asymmetric dimethylarginine; AGO2: argonaute RISC catalytic subunit 2; CAL: carotid artery ligation; CALCOCO2: calcium binding and coiled-coil domain 2; CMA: chaperone-mediated autophagy; CTSB: cathepsin B; CTSD: cathepsin D; DGCR8: DGCR8 microprocessor complex subunit; DOCK2: dedicator of cyto-kinesis 2; EpiAdi: epididymal adipose tissue; HSPA8: heat shock protein family A (Hsp70) member 8; IHC: immunohistochemical; ISR: in-stent restenosis; KO: knockout; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; miRNA: microRNA; NLRP3: NLR family pyrin domain containing 3; N/L: ammonium chloride combined with leupeptin; PRMT: protein arginine methyltransferase; PVAT: peri-vascular adipose tissues; PYCARD: PYD and CARD domain containing; sDMA: symmetric dimethylarginine; ULK1: unc-51 like kinase 1; VSMCs: vascular smooth muscle cells; WT: wild-type.


Asunto(s)
Autofagia Mediada por Chaperones , MicroARNs , Lesiones del Sistema Vascular , Animales , Ratones , MicroARNs/genética , Inflamasomas/metabolismo , Autofagia/fisiología , Neointima , Proteínas de Unión al ARN , Proteínas de Choque Térmico/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo
5.
Am J Respir Cell Mol Biol ; 70(1): 39-49, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37713305

RESUMEN

Increasing evidence suggests that mitochondrial dysfunction in pulmonary endothelial cells (ECs) plays a causative role in the initiation and progression of pulmonary hypertension (PH); how mitochondria become dysfunctional in PH remains elusive. Mitochondria-derived vesicles (MDVs) are small subcellular vesicles that excise from mitochondria. Whether MDV deregulation causes mitochondrial dysfunction in PH is unknown. The aim of this study was to determine MDV regulation in ECs and to elucidate how MDV deregulation in ECs leads to PH. MDV formation and mitochondrial morphology/dynamics were examined in ECs of EC-specific liver kinase B1 (LKB1) knockout mice (LKB1ec-/-), in monocrotaline-induced PH rats, and in lungs of patients with PH. Pulmonary ECs of patients with PH and hypoxia-treated pulmonary ECs exhibited increased mitochondrial fragmentation and disorganized mitochondrial ultrastructure characterized by electron lucent-swelling matrix compartments and concentric layering of the cristae network, together with defective MDV shedding. MDVs actively regulated mitochondrial membrane dynamics and mitochondrial ultrastructure via removing mitofission-related cargoes. The shedding of MDVs from parental mitochondria required LKB1-mediated mitochondrial recruitment of Rab9 GTPase. LKB1ec-/- mice spontaneously developed PH with decreased mitochondrial pools of Rab9 GTPase, defective MDV shedding, and disequilibrium of the mitochondrial fusion-fission cycle in pulmonary ECs. Aerosol intratracheal delivery of adeno-associated virus LKB1 reversed PH, together with improved MDV shedding and mitochondrial function in rats in vivo. We conclude that LKB1 regulates MDV shedding and mitochondrial dynamics in pulmonary ECs by enhancing mitochondrial recruitment of Rab9 GTPase. Defects of LKB1-mediated MDV shedding from parental mitochondria instigate EC dysfunction and PH.


Asunto(s)
Hipertensión Pulmonar , Enfermedades Mitocondriales , Ratas , Humanos , Ratones , Animales , Hipertensión Pulmonar/metabolismo , Células Endoteliales/metabolismo , Mitocondrias , GTP Fosfohidrolasas/metabolismo , Ratones Noqueados , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/metabolismo
6.
Cell Mol Life Sci ; 80(9): 264, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37615725

RESUMEN

The SET and MYND domain-containing protein 2 (SMYD2) is a histone lysine methyltransferase that has been reported to regulate carcinogenesis and inflammation. However, its role in vascular smooth muscle cell (VSMC) homeostasis and vascular diseases has not been determined. Here, we investigated the role of SMYD2 in VSMC phenotypic modulation and vascular intimal hyperplasia and elucidated the underlying mechanism. We observed that SMYD2 expression was downregulated in injured carotid arteries in mice and phenotypically modulated VSMCs in vitro. Using an SMC-specific SMYD2 knockout mouse model, we found that SMYD2 ablation in VSMCs exacerbated neointima formation after vascular injury in vivo. Conversely, SMYD2 overexpression inhibited VSMC proliferation and migration in vitro and attenuated arterial narrowing in injured vessels in mice. SMYD2 downregulation promoted VSMC phenotypic switching accompanied with enhanced proliferation and migration. Mechanistically, genome-wide transcriptome analysis and loss/gain-of-function studies revealed that SMYD2 up-regulated VSMC contractile gene expression and suppressed VSMC proliferation and migration, in part, by promoting expression and transactivation of the master transcription cofactor myocardin. In addition, myocardin directly interacted with SMYD2, thereby facilitating SMYD2 recruitment to the CArG regions of SMC contractile gene promoters and leading to an open chromatin status around SMC contractile gene promoters via SMYD2-mediated H3K4 methylation. Hence, we conclude that SMYD2 is a novel regulator of VSMC contractile phenotype and intimal hyperplasia via a myocardin-dependent epigenetic regulatory mechanism.


Asunto(s)
Músculo Liso Vascular , Proteínas Nucleares , Animales , Ratones , Carcinogénesis , Hiperplasia/genética , Ratones Noqueados , Proteínas Nucleares/genética
7.
Theranostics ; 13(9): 2825-2842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284455

RESUMEN

Rationale: Nicotine has been reported to be a strong risk factor for atherosclerosis. However, the underlying mechanism by which nicotine controls atherosclerotic plaque stability remain largely unknown. Objective: The aim of this study was to evaluate the impact of lysosomal dysfunction mediated NLRP3 inflammasome activation in vascular smooth muscle cell (VSMC) on atherosclerotic plaque formation and stability in advanced atherosclerosis at the brachiocephalic arteries (BA). Methods and Results: Features of atherosclerotic plaque stability and the markers for NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome were monitored in the BA from nicotine or vehicle-treated apolipoprotein E deficient (Apoe-/-) mice fed with Western-type diet (WD). Nicotine treatment for 6 weeks accelerated atherosclerotic plaque formation and enhanced the hallmarks of plaque instability in BA of Apoe-/- mice. Moreover, nicotine elevated interleukin 1 beta (IL-1ß) in serum and aorta and was preferred to activate NLRP3 inflammasome in aortic vascular smooth muscle cells (VSMC). Importantly, pharmacological inhibition of Caspase1, a key downstream target of NLRP3 inflammasome complex, and genetic inactivation of NLRP3 significantly restrained nicotine-elevated IL-1ß in serum and aorta, as well as nicotine-stimulated atherosclerotic plaque formation and plaque destabilization in BA. We further confirmed the role of VSMC-derived NLRP3 inflammasome in nicotine-induced plaque instability by using VSMC specific TXNIP (upstream regulator of NLRP3 inflammasome) deletion mice. Mechanistic study further showed that nicotine induced lysosomal dysfunction resulted in cathepsin B cytoplasmic release. Inhibition or knockdown of cathepsin B blocked nicotine-dependent inflammasome activation. Conclusions: Nicotine promotes atherosclerotic plaque instability by lysosomal dysfunction-mediated NLRP3 inflammasome activation in vascular smooth muscle cells.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Inflamasomas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Catepsina B , Nicotina/efectos adversos , Músculo Liso Vascular , Aterosclerosis/genética , Apolipoproteínas E/genética
9.
Res Sq ; 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37090651

RESUMEN

The SET and MYND domain-containing protein 2 (SMYD2) is a histone lysine methyltransferase that has been reported to regulate carcinogenesis and inflammation. However, its role in vascular smooth muscle cell (VSMC) homeostasis and vascular diseases has not been determined. Here, we investigated the role of SMYD2 in VSMC phenotypic modulation and vascular intimal hyperplasia and elucidated the underlying mechanism. We observed that SMYD2 expression was downregulated in injured carotid arteries in mice and phenotypically modulated VSMCs in vitro. Using a SMC-specific Smyd2 knockout mouse model, we found that Smyd2 ablation in VSMCs exacerbates neointima formation after vascular injury in vivo. Conversely, Smyd2 overexpression inhibits VSMC proliferation and migration in vitro and attenuates arterial narrowing in injured vessels in mice. Smyd2 downregulation promotes VSMC phenotypic switching accompanied with enhanced proliferation and migration. Mechanistically, genome-wide transcriptome analysis and loss/gain-of-function studies revealed that SMYD2 up-regulates VSMC contractile gene expression and suppresses VSMC proliferation and migration, in part, by promoting expression and transactivation of the master transcription cofactor myocardin. In addition, myocardin directly interacts with SMYD2, thereby facilitating SMYD2 recruitment to the CArG regions of SMC contractile gene promoters and leading to an open chromatin status around SMC contractile gene promoters via SMYD2-mediated H3K4 methylation. Hence, we conclude that SMYD2 is a novel regulator of VSMC contractile phenotype and intimal hyperplasia via a myocardin-dependent epigenetic regulatory mechanism and may be a potential therapeutic target for occlusive vascular diseases.

11.
Nat Commun ; 13(1): 7721, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513627

RESUMEN

Consuming fish oils (FO) is linked to reduced risk of cardiovascular disease in certain populations. However, FO failed to exhibit therapeutic effects in some patients with cardiovascular disease. This study aimed to determine the possible reasons for the inconsistent effects of FO. AMP-activated protein kinase (AMPK) α2 is an important energy metabolic sensor, which was reported to involve in FO mediated regulation of lipid and glucose metabolism. In an in vivo study, FO administration significantly reduced the aortic lesions and inflammation in the Ldlr-/- mouse model of atherosclerosis, but not in Ldlr-/-/Prkaa2-/-and Ldlr-/-/Prkaa2-/-Sm22Cre mice. Mechanistically, inactivation of AMPKα2 increased the SUMOylation of the fatty acid receptor GPR120 to block FO-induced internalization and binding to ß-arrestin. In contrast, activation of AMPKα2 can phosphorylate the C-MYC at Serine 67 to inhibit its trans-localization into the nuclei and transcription of SUMO-conjugating E2 enzyme UBC9 and SUMO2/3 in vascular smooth muscle cells (VSMCs), which result in GPR120 SUMOylation. In human arteries, AMPKα2 levels were inversely correlated with UBC9 expression. In a cohort of patients with atherosclerosis, FO concentrations did not correlate with atherosclerotic severity, however, in a subgroup analysis a negative correlation between FO concentrations and atherosclerotic severity was found in patients with higher AMPKα2 levels. These data indicate that AMPKα2 is required for the anti-inflammatory and anti-atherosclerotic effects of FO.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Ratones , Animales , Aceites de Pescado/farmacología , Sumoilación , Enfermedades Cardiovasculares/patología , Proteínas Quinasas Activadas por AMP/metabolismo , Miocitos del Músculo Liso/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/patología
12.
Vector Borne Zoonotic Dis ; 22(10): 512-519, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36201229

RESUMEN

Background: Toxoplasma gondii is an obligate intracellular parasite that invades nearly all nucleated cells of a broad spectrum of vertebrate hosts, and which may cause serious disease in immunocompromised patients, as well as in the immunologically incompetent fetus. This study aimed to establish a loop-mediated isothermal amplification (LAMP) technique to rapidly detect T. gondii in the blood infection by targeting the 529 bp repeat element of T. gondii. Materials and Methods: A turbidity monitoring system, together with visual reagent, was used to test the amplification result of the LAMP assay. In addition, the specificity and sensitivity of the LAMP assay were measured. Results: The results suggest that the successfully established LAMP assay profile can detect the DNA of T. gondii at 67°C within 40 min. The limit of detection of the LAMP assay was 101 copies/µL. No cross reaction occurred with Plasmodium vivax, Toxocara cati, Clonorchis sinensi, Spirometra mansoni or Cryptosporidium parvum. We validated the developed LAMP assay by detecting T. gondii in DNA extracted from 353 blood samples collected from domestic cats and dogs. The percentages of positive results in detecting these blood samples by LAMP and conventional PCR were 5.38% and 2.83%, respectively. Conclusions: Our findings show that the developed LAMP assay offers higher analytical sensitivity than conventional PCR and good analytical specificity, minimizes aerosol contamination, and can be applied to on-site rapid detection of T. gondii.


Asunto(s)
Enfermedades de los Gatos , Criptosporidiosis , Cryptosporidium , Enfermedades de los Perros , Toxoplasma , Gatos , Perros , Animales , Toxoplasma/genética , ADN Protozoario/genética , Sensibilidad y Especificidad , Cryptosporidium/genética , Técnicas de Amplificación de Ácido Nucleico/veterinaria , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedades de los Gatos/diagnóstico
13.
Nat Commun ; 13(1): 6371, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289221

RESUMEN

Indoleamine 2,3 dioxygenase-1 (IDO1) catalyzes tryptophan-kynurenine metabolism in many inflammatory and cancer diseases. Of note, acute inflammation that occurs immediately after heart injury is essential for neonatal cardiomyocyte proliferation and heart regeneration. However, the IDO1-catalyzed tryptophan metabolism during heart regeneration is largely unexplored. Here, we find that apical neonatal mouse heart resection surgery led to rapid and consistent increases in cardiac IDO1 expression and kynurenine accumulation. Cardiac deletion of Ido1 gene or chemical inhibition of IDO1 impairs heart regeneration. Mechanistically, elevated kynurenine triggers cardiomyocyte proliferation by activating the cytoplasmic aryl hydrocarbon receptor-SRC-YAP/ERK pathway. In addition, cardiomyocyte-derived kynurenine transports to endothelial cells and stimulates cardiac angiogenesis by promoting aryl hydrocarbon receptor nuclear translocation and enhancing vascular endothelial growth factor A expression. Notably, Ahr deletion prevents indoleamine 2,3 dioxygenase -kynurenine-associated heart regeneration. In summary, increasing indoleamine 2,3 dioxygenase-derived kynurenine level promotes cardiac regeneration by functioning as an endogenous regulator of cardiomyocyte proliferation and cardiac angiogenesis.


Asunto(s)
Quinurenina , Receptores de Hidrocarburo de Aril , Ratones , Animales , Quinurenina/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Triptófano/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Células Endoteliales/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal/fisiología , Proliferación Celular
14.
Front Cardiovasc Med ; 9: 961491, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017098

RESUMEN

Objective: The purpose of this study was to evaluate the prognosis of patients with anomalous left coronary artery originating from pulmonary artery with varying cardiac function after surgical correction. Methods: This was a single-center retrospective cohort study including 51 patients with anomalous left coronary artery originating from pulmonary artery, all of whom underwent surgery at our center. Results: All 5 deaths occurred in the pre-operative low cardiac function group (n = 39). After corrected by body surface area, parameters such as left coronary artery, right coronary artery, left atrial diameter, left ventricular end-diastolic diameter, left ventricular end-systolic diameter, and main pulmonary artery diameter, were lower in patients in the normal cardiac function group than in the low cardiac function group. The rate of collateral circulation formation was higher in the normal cardiac function group. The proportion of changes of T wave was higher in the low cardiac function group (P = 0.005), and the duration of vasoactive drugs (dopamine, milrinone, epinephrine, nitroglycerin.) was longer in the low cardiac function group. Left ventricular end-diastolic diameter, left ventricular end-systolic diameter, main pulmonary artery diameter, and left atrial diameter were smaller than those pre-operatively (P < 0.05). Left ventricular ejection fraction was higher than that pre-operatively (P = 0.003). The degree of mitral regurgitation in the low cardiac function group was reduced post-operatively (P < 0.001). Conclusion: There was a significant difference between the pre-operative baseline data of the low cardiac function group and the normal cardiac function group. After surgical repair, cardiac function gradually returned to normal in the low cardiac function group. The low cardiac function group required vasoactive drugs for a longer period of time. The left ventricular end-diastolic diameter, left ventricular end-systolic diameter, left atrial diameter, and main pulmonary artery diameter decreased and gradually returned to normal after surgery. The degree of mitral regurgitation in the low cardiac function group was reduced after surgery.

15.
Circulation ; 145(24): 1784-1798, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35582948

RESUMEN

BACKGROUND: IDO1 (indoleamine 2,3-dioxygenase 1) is the rate-limiting enzyme for tryptophan metabolism. IDO1 malfunction is involved in the pathogenesis of atherosclerosis. Vascular smooth muscle cells (VSMCs) with an osteogenic phenotype promote calcification and features of plaque instability. However, it remains unclear whether aberrant IDO1-regulated tryptophan metabolism causes VSMCs osteogenic reprogramming and calcification. METHODS: We generated global Apoe (apolipoprotein E) and Ido1 double knockout mice, and Apoe knockout mice with specific deletion of IDO1 in VSMCs or macrophages. Arterial intimal calcification was evaluated by a Western diet-induced atherosclerotic calcification model. RESULTS: Global deficiency of IDO1 boosted calcific lesion formation without sex bias in vivo. Conditional IDO1 loss of function in VSMCs rather than macrophages promoted calcific lesion development and the abundance of RUNX2 (runt-related transcription factor 2). In contrast, administration of kynurenine via intraperitoneal injection markedly delayed the progression of intimal calcification in parallel with decreased RUNX2 expression in both Apoe-/- and Apoe-/-Ido1-/- mice. We found that IDO1 deletion restrained RUNX2 from proteasomal degradation, which resulted in enhanced osteogenic reprogramming of VSMCs. Kynurenine administration downregulated RUNX2 in an aryl hydrocarbon receptor-dependent manner. Kynurenine acted as the endogenous ligand of aryl hydrocarbon receptor, controlled resultant interactions between cullin 4B and aryl hydrocarbon receptor to form an E3 ubiquitin ligase that bound with RUNX2, and subsequently promoted ubiquitin-mediated instability of RUNX2 in VSMCs. Serum samples from patients with coronary artery calcification had impaired IDO1 activity and decreased kynurenine catabolites compared with those without calcification. CONCLUSIONS: Kynurenine, an IDO1-mediated tryptophan metabolism main product, promotes RUNX2 ubiquitination and subsequently leads to its proteasomal degradation via an aryl hydrocarbon receptor-dependent nongenomic pathway. Insufficient kynurenine exerts the deleterious role of IDO1 ablation in promoting RUNX2-mediated VSMCs osteogenic reprogramming and calcification in vivo.


Asunto(s)
Aterosclerosis , Calcificación Vascular , Animales , Apolipoproteínas E , Aterosclerosis/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Triptófano/metabolismo , Calcificación Vascular/metabolismo
16.
Nat Commun ; 13(1): 648, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115536

RESUMEN

In the bone marrow, classical and plasmacytoid dendritic cells (DC) develop from the macrophage-DC precursor (MDP) through a common DC precursor (CDP) step. This developmental process receives essential input from the niche in which it takes place, containing endothelial cells (EC) among other cell types. Here we show that targeted deletion of serine/threonine kinase 11 (Stk11) encoding tumor suppressor liver kinase b1 (Lkb1) in mouse ECs but not DCs, results in disrupted differentiation of MDPs to CDPs, severe reduction in mature DC numbers and spontaneous tumorigenesis. In wild type ECs, Lkb1 phosphorylates polypyrimidine tract binding protein 1 (Ptbp1) at threonine 138, which regulates stem cell factor (Scf) pre-mRNA splicing. In the absence of Lkb1, exon 6 of Scf is spliced out, leading to the loss of Scf secretion. Adeno-associated-virus-mediated delivery of genes encoding either soluble Scf or the phosphomimetic mutant Ptbp1T138E proteins rescued the defects of MDP to CDP differentiation and DC shortage in the endothelium specific Stk11 knockout mice. In summary, endothelial Stk11 expression regulates DC differentiation via modulation of Scf splicing, marking the Stk11-soluble-Scf axis as a potential cause of DC deficiency syndromes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Diferenciación Celular/genética , Transformación Celular Neoplásica/genética , Células Dendríticas/metabolismo , Células Endoteliales/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Western Blotting , Células de la Médula Ósea/metabolismo , Supervivencia Celular/genética , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones Noqueados , Ratones Transgénicos , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Células Madre/genética , Factor de Células Madre/metabolismo
17.
iScience ; 25(1): 103570, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34988407

RESUMEN

Overwhelming evidence indicates that infiltration of tumors by Treg cells with elevated levels of FOXP3 suppresses the host antitumor immune response. However, the molecular mechanisms that maintain high expression of FOXP3 in tumor-infiltrating Treg cells remain elusive. Here, we report that AMP-activated protein kinase alpha1 (AMPKα1) enables high FOXP3 expression in tumor-infiltrating Treg cells. Mice with Treg-specific AMPKα1 deletion showed delayed tumor progression and enhanced antitumor T cell immunity. Further experiments showed that AMPKα1 maintains the functional integrity of Treg cells and prevents interferon-γ production in tumor-infiltrating Treg cells. Mechanistically, AMPKα1 maintains the protein stability of FOXP3 in Treg cells by downregulating the expression of E3 ligase CHIP (STUB1). Our results suggest that AMPKα1 activation promotes tumor growth by maintaining FOXP3 stability in tumor-infiltrating Treg cells and that selective inhibition of AMPK in Treg cells might be an effective anti-tumor therapy.

18.
Cell Mol Immunol ; 18(12): 2609-2617, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34728795

RESUMEN

Regulatory T cells (Treg cells) are crucial for maintaining immune tolerance. Compromising the regulatory function of Treg cells can lead to autoimmune liver disease. However, how Treg cell function is regulated has not been fully clarified. Here, we report that mice with AMP-activated protein kinase alpha 1 (AMPKα1) globally knocked out spontaneously develop immune-mediated liver injury, with massive lymphocyte infiltration in the liver, elevated serum alanine aminotransferase levels, and greater production of autoantibodies. Both transplantation of wild-type bone marrow and adoptive transfer of wild-type Treg cells can prevent liver injury in AMPKα1-KO mice. In addition, Treg cell-specific AMPKα1-KO mice display histological features similar to those associated with autoimmune liver disease, greater production of autoantibodies, and hyperactivation of CD4+ T cells. AMPKα1 deficiency significantly impairs Treg cell suppressive function but does not affect Treg cell differentiation or proliferation. Furthermore, AMPK is activated upon T cell receptor (TCR) stimulation, which triggers Foxp3 phosphorylation, suppressing Foxp3 ubiquitination and proteasomal degradation. Importantly, the frequency of Treg cells and the phosphorylation levels of AMPK at T172 in circulating blood are significantly lower in patients with autoimmune liver diseases. Conclusion: Our data suggest that AMPK maintains the immunosuppressive function of Treg cells and confers protection against autoimmune liver disease.


Asunto(s)
Enfermedades Autoinmunes , Hepatopatías , Traslado Adoptivo , Animales , Factores de Transcripción Forkhead/metabolismo , Humanos , Ratones , Linfocitos T Reguladores
19.
Front Immunol ; 12: 731701, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630411

RESUMEN

Aortic diseases are the primary public health concern. As asymptomatic diseases, abdominal aortic aneurysm (AAA) and atherosclerosis are associated with high morbidity and mortality. The inflammatory process constitutes an essential part of a pathogenic cascade of aortic diseases, including atherosclerosis and aortic aneurysms. Inflammation on various vascular beds, including endothelium, smooth muscle cell proliferation and migration, and inflammatory cell infiltration (monocytes, macrophages, neutrophils, etc.), play critical roles in the initiation and progression of aortic diseases. The tryptophan (Trp) metabolism or kynurenine pathway (KP) is the primary way of degrading Trp in most mammalian cells, disturbed by cytokines under various stress. KP generates several bioactive catabolites, such as kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykynurenine (3-HK), etc. Depends on the cell types, these metabolites can elicit both hyper- and anti-inflammatory effects. Accumulating evidence obtained from various animal disease models indicates that KP contributes to the inflammatory process during the development of vascular disease, notably atherosclerosis and aneurysm development. This review outlines current insights into how perturbed Trp metabolism instigates aortic inflammation and aortic disease phenotypes. We also briefly highlight how targeting Trp metabolic pathways should be considered for treating aortic diseases.


Asunto(s)
Aorta/metabolismo , Aneurisma de la Aorta Abdominal/metabolismo , Aortitis/metabolismo , Aterosclerosis/metabolismo , Mediadores de Inflamación/metabolismo , Triptófano/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Aorta/efectos de los fármacos , Aorta/inmunología , Aorta/patología , Aneurisma de la Aorta Abdominal/tratamiento farmacológico , Aneurisma de la Aorta Abdominal/inmunología , Aneurisma de la Aorta Abdominal/patología , Aortitis/tratamiento farmacológico , Aortitis/inmunología , Aortitis/patología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/inmunología , Aterosclerosis/patología , Humanos , Mediadores de Inflamación/antagonistas & inhibidores , Quinurenina/metabolismo , Transducción de Señal
20.
Front Cardiovasc Med ; 8: 664752, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631807

RESUMEN

Objectives: The management of atrial isomerism with complex congenital heart disease remains challenging. Experience has been largely obtained in advanced countries. The clinical diversity is greater in China. We evaluated the early- and medium-term outcomes of surgical treatment of these patients. Methods: We reviewed 86 patients of atrial isomerism with complex congenital heart disease undergoing varied surgeries in our center in 2008-2020. Cox regression models were used to analyze the risk factors for mortality. Results: There were 75 cases of right and 11 of left atrial isomerism. Eighty-three (96.5%) patients underwent single-ventricle staged palliation approach, with 10 early and 7 late deaths. The overall 1-, 5-, and 10-year survival rates were 84.7, 79.3, and 79.3%, respectively. Thirty-six (43.4%) patients completed the Fontan procedure with median age of 48 months and freedom from death or Fontan failure at 1-, 5-, and 8-years were 94.4, 87.4, and 80.7%, respectively. Concomitant total anomalous pulmonary venous connection [hazard ratio (HR): 5.15 (1.95-12.94), p = 0.008], more than moderate atrioventricular valve regurgitation [HR: 4.82 (2.42-6.79), p = 0.003], and the need for first-stage palliative surgery [HR: 4.58 (1.64-10.76), p = 0.015] were independent risk factors for mortality. Conclusions: Despite even greater clinical diversity, the surgical outcomes of atrial isomerism with complex congenital heart disease are improving in China. The early and intermediate outcomes are comparable to many previous reports. Concomitant total anomalous pulmonary venous connection, moderate or severe atrioventricular valve regurgitation, and the need for a first-stage palliative surgery are still independent risk factors for mortality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA