Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 22833, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129485

RESUMEN

The use of pulse voltage can greatly improve the precision of electrochemical microfabrication, and the narrower the pulse width of the applied pulse voltage signal, the higher the machining precision. However, the commonly used chopper circuit topology of pulse power supplies is limited by the maximum switching frequency of the field-effect transistor. To address this problem, this paper proposes a nanosecond pulse electrochemical micromachining power supply based on a differential circuit. The power supply uses the STM32F103C8T6 microcontroller as the control core to output high-performance rectangular waves through a DDS device. After differential, rectification, filtering, and power amplification processing, stable, frequency, amplitude, and pulse width adjustable spike pulse voltage signals are obtained. By establishing a system mathematical model and optimizing the time constant of the differential circuit, theoretically, the sub-nanosecond pulse width can be obtained. Prototype performance tests show that the power supply has a maximum frequency of 20 MHz, a minimum pulse width of 1.8 ns, and a maximum peak voltage of 10 V. By using this power supply for microhole electrochemical machining experiments, nanometer-level machining precision has been achieved.

2.
Soft Matter ; 15(16): 3343-3352, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30951070

RESUMEN

We perform dynamics simulations to investigate the translational and rotational glassy dynamics in a glass-forming liquid of monodisperse soft Janus particles. We find that, with decreasing temperature, the mean-square angular displacement shows no clear plateau in the caging region, in contrast with the apparent caging behavior of translational motion. By defining a reorientational mean-square angular displacement, the caging behavior of rotational motion can be recognized. On approaching the glass transition (decreasing temperature), the coupling between translational and rotational relaxation increases, while the coupling between translational and rotational diffusion decreases, whereas the coupling between translational and reorientational diffusion increases. The strong decoupling between translational and rotational diffusion is due to the suppressed translational mobility but promoted rotational mobility of soft Janus particles. We think that the low-T SE and SED decoupling is mainly attributed to hopping motion of soft Janus particles, whereas the high-T SE and SED decoupling is mainly attributed to collective cage motion of soft Janus particles. Our results demonstrate that interaction anisotropy has a critical effect on the translational and rotational dynamics of soft Janus particles.

3.
Nanoscale ; 8(7): 4070-6, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26817794

RESUMEN

Because of the unique architectures and promising potential applications of biomimetic helical structures in biotechnology and nanotechnology, the design and fabrication of these structures by experimentally realizable anisotropic colloidal particles remain one of the most challenging tasks in materials science. Here we show how soft Janus particles self-assemble into supracolloidal helices with distinctive structural characteristics, including single helices, double helices, and Bernal spirals, by appropriately tuning the particle softness. We further examine the kinetic mechanisms governing the formation of different helical structures by using particle-based dynamics simulations. Our results provide a new way for experimentally fabricating structure-controllable supracolloidal helices solely from the self-assembly of soft Janus particles.


Asunto(s)
Simulación de Dinámica Molecular , Nanopartículas/química , Conformación Molecular , Nanotecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...