Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Life Sci ; 352: 122871, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38936602

RESUMEN

AIMS: The gut-brain axis is the communication mechanism between the gut and the central nervous system, and the intestinal flora and lipopolysaccharide (LPS) play a crucial role in this mechanism. Exercise regulates the gut microbiota composition and metabolite production (i.e., LPS). We aimed to investigate the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on cognitive function in C57BL/6 J mice through gut-brain axis regulation of gut microbiota composition and LPS displacement. MAIN METHODS: C57BL/6 J male mice were randomly divided into sedentary, HIIT, and MICT groups. After 12 weeks of exercise intervention, the cognitive function of the brain and mRNA levels of related inflammatory factors were measured. RNA sequencing, Golgi staining, intestinal microbial 16 s rDNA sequencing, and ELISA were performed. KEY FINDINGS: HIIT and MICT affect brain cognitive function by regulating the gut microbiota composition and its metabolite, LPS, through the gut microbiota-gut-brain axis. HIIT is suspected to have a risk: it can induce "intestinal leakage" by regulating intestinal permeability-related microbiota, resulting in excessive LPS in the blood and brain and activating M1 microglia in the brain, leading to reduced dendritic spine density and affecting cognitive function. SIGNIFICANCE: This study revealed a potential link between changes in the gut microbiota and cognitive function. It highlighted the possible risk of HIIT in reducing dendritic spine density and affecting cognitive function.


Asunto(s)
Eje Cerebro-Intestino , Cognición , Microbioma Gastrointestinal , Entrenamiento de Intervalos de Alta Intensidad , Lipopolisacáridos , Ratones Endogámicos C57BL , Condicionamiento Físico Animal , Animales , Microbioma Gastrointestinal/fisiología , Masculino , Ratones , Cognición/fisiología , Entrenamiento de Intervalos de Alta Intensidad/métodos , Condicionamiento Físico Animal/fisiología , Eje Cerebro-Intestino/fisiología , Encéfalo/metabolismo , Microglía/metabolismo
2.
Int J Biol Macromol ; 274(Pt 2): 133304, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925189

RESUMEN

Epithelial barrier impairment of intestinal inflammation leads to the leakage of bacteria, antigens and consequent persistent immune imbalance. Restoring the barrier function holds promise for management of intestinal inflammation, while the theragnostic strategies are limited. In this study, we developed a novel coating by catalase (CAT)-catalyzed polymerization of tannic acid (TA) and combined chelation network with Fe3+. TA-Fe3+ coating was self-polymerized in situ along the small intestinal mucosa, demonstrating persistent adhesion properties and protective function. In enteritis models, sequential administration of TA-Fe3+ complex solution effectively restored the barrier function and alleviated the intestinal inflammation. Overexpressed CAT in inflammatory lesion is more favorable for the in situ targeting growth of TA-Fe3+ coating onto the defective barrier. Based on the high longitudinal relaxivity of Fe3+, the pathologically catalyzed coating facilitated the visualization of intestinal barrier impairment through MRI. In conclusion, the novel TA-Fe3+ delivery coating proposed an alternative approach to promote theranostic intervention for intestinal diseases.


Asunto(s)
Catalasa , Mucosa Intestinal , Taninos , Taninos/química , Taninos/farmacología , Animales , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Catalasa/metabolismo , Catalasa/química , Ratones , Nanomedicina Teranóstica , Hierro/química , Catálisis , Compuestos Férricos/química , Polifenoles
4.
Front Immunol ; 14: 1162458, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37539055

RESUMEN

Background: As yet, the genetic abnormalities involved in the exacerbation of Ulcerative colitis (UC) have not been adequately explored based on bioinformatic methods. Materials and methods: The gene microarray data and clinical information were downloaded from Gene Expression Omnibus (GEO) repository. The scale-free gene co-expression networks were constructed by R package "WGCNA". Gene enrichment analysis was performed via Metascape database. Differential expression analysis was performed using "Limma" R package. The "randomForest" packages in R was used to construct the random forest model. Unsupervised clustering analysis performed by "ConsensusClusterPlus"R package was utilized to identify different subtypes of UC patients. Heat map was established using the R package "pheatmap". Diagnostic parameter capability was evaluated by ROC curve. The"XSum"packages in R was used to screen out small-molecule drugs for the exacerbation of UC based on cMap database. Molecular docking was performed with Schrodinger molecular docking software. Results: Via WGCNA, a total 77 high Mayo score-associated genes specific in UC were identified. Subsequently, the 9 gene signatures of the exacerbation of UC was screened out by random forest algorithm and Limma analysis, including BGN,CHST15,CYYR1,GPR137B,GPR4,ITGA5,LILRB1,SLFN11 and ST3GAL2. The ROC curve suggested good predictive performance of the signatures for exacerbation of UC in both the training set and the validation set. We generated a novel genotyping scheme based on the 9 signatures. The percentage of patients achieved remission after 4 weeks intravenous corticosteroids (CS-IV) treatment was higher in cluster C1 than that in cluster C2 (54% vs. 27%, Chi-square test, p=0.02). Energy metabolism-associated signaling pathways were significantly up-regulated in cluster C1, including the oxidative phosphorylation, pentose and glucuronate interconversions and citrate cycle TCA cycle pathways. The cluster C2 had a significant higher level of CD4+ T cells. The"XSum"algorithm revealed that Exisulind has a therapeutic potential for UC. Exisulind showed a good binding affinity for GPR4, ST3GAL2 and LILRB1 protein with the docking glide scores of -7.400 kcal/mol, -7.191 kcal/mol and -6.721 kcal/mol, respectively.We also provided a comprehensive review of the environmental toxins and drug exposures that potentially impact the progression of UC. Conclusion: Using WGCNA and random forest algorithm, we identified 9 gene signatures of the exacerbation of UC. A novel genotyping scheme was constructed to predict the severity of UC and screen UC patients suitable for CS-IV treatment. Subsequently, we identified a small molecule drug (Exisulind) with potential therapeutic effects for UC. Thus, our study provided new ideas and materials for the personalized clinical treatment plans for patients with UC.


Asunto(s)
Colitis Ulcerosa , Humanos , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Receptor Leucocitario Tipo Inmunoglobulina B1/genética , Simulación del Acoplamiento Molecular , Redes Reguladoras de Genes , Proteínas Nucleares/genética
6.
Diabetes ; 71(9): 1915-1928, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35771993

RESUMEN

Dysregulation of hepatic VLDL secretion contributes to the pathogenesis of metabolic diseases, such as nonalcoholic fatty liver disease (NAFLD) and hyperlipidemia. Accumulating evidence has suggested that long noncoding RNAs (lncRNAs) had malfunctioning roles in the pathogenesis of NAFLD. However, the function of lncRNAs in controlling hepatic VLDL secretion remains largely unillustrated. Here, we identified a novel lncRNA, lncRNA regulator of hyperlipidemia (lncRHL), which was liver-enriched, downregulated on high-fat diet feeding, and inhibited by oleic acid treatment in primary hepatocytes. With genetic manipulation in mice and primary hepatocytes, depletion of lncRHL induces hepatic VLDL secretion accompanied by decreased hepatic lipid contents. Conversely, lncRHL restoration reduces VLDL secretion with increased lipid deposition in hepatocytes. Mechanistic analyses indicate that lncRHL binds directly to heterogeneous nuclear ribonuclear protein U (hnRNPU), and thereby enhances its stability, and that hnRNPU can transcriptional activate Bmal1, leading to inhibition of VLDL secretion in hepatocytes. lncRHL deficiency accelerates the protein degradation of hnRNPU and suppresses the transcription of Bmal1, which in turn activates VLDL secretion in hepatocytes. With results taken together, we conclude that lncRHL is a novel suppressor of hepatic VLDL secretion. Activating the lncRHL/hnRNPU/BMAL1/MTTP axis represents a potential strategy for the maintenance of intrahepatic and plasma lipid homeostasis.


Asunto(s)
Factores de Transcripción ARNTL , Proteínas Portadoras , Ribonucleoproteína Heterogénea-Nuclear Grupo U , Hiperlipidemias , Hígado , ARN Largo no Codificante , Factores de Transcripción ARNTL/metabolismo , Animales , Proteínas Portadoras/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo U/metabolismo , Hiperlipidemias/metabolismo , Lipoproteínas VLDL/metabolismo , Hígado/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Triglicéridos/metabolismo
7.
Oncol Res Treat ; 44(7-8): 414-421, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34091457

RESUMEN

INTRODUCTION: Deleterious heterozygous mutation of the MLH1 gene is an important cause of Lynch syndrome (LS), an autosomal dominant cancer caused by functional defects in the DNA mismatch repair (MMR) complex. CASE REPORT: The proband was a 35-year-old patient with confirmed colorectal cancer (CRC). Immunohistochemical (IHC) staining revealed the absence of MLH1 and PMS2 expression in the colorectal tissue specimens of the patient. Genetic counselling and tumor gene testing were performed using next-generation sequencing technology. The genetic tumor verification report showed the deletion of 4 bases in exon 12 of the tested MLH1 gene and a transcoding mutation. To our knowledge, this germline splice site mutation of MLH1 has not been reported before. The proband accepted several therapeutic regimens including PD-1 inhibitor and ultimately died of multiple organ failure. CONCLUSION: Nonsense mutations and frameshift mutations of MMR genes are the most common causes of LS. Common mutations include those in MSH2, MLH1, MSH6, and PMS2. We report a mutation of MLH1 that has never been reported before. We recommend that patients with a history of colon or rectal cancer receive universal MMR or MSI testing and checkpoint inhibitor therapy for the first-line treatment of deficient MMR CRC.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Homólogo 1 de la Proteína MutL/genética , Adulto , Neoplasias Colorrectales Hereditarias sin Poliposis/diagnóstico , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN , Proteínas de Unión al ADN/genética , Exones/genética , Eliminación de Gen , Predisposición Genética a la Enfermedad , Humanos , Inestabilidad de Microsatélites , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética
8.
Zhongguo Fei Ai Za Zhi ; 23(12): 1101-1107, 2020 Dec 20.
Artículo en Chino | MEDLINE | ID: mdl-33357318

RESUMEN

Extrachromosomal DNA (ecDNA) is a small segment of circular DNA located outside the chromosome, which has the function of self-replication. Recently, amplification of oncogenes on ecDNA has been proved to be a common phenomenon in tumor cells, and has some characteristics worth studying, such as correlation with patients' poor prognosis. Multiple chromosomal events are involved in the formation of ecDNA, and its amplification can directly increase the number of DNA copies of extra-chromosomal oncogenes and accelerate the generation and development of tumors. Moreover, the segregation pattern of unequal transmission of parental ecDNA cells to offspring not only increases tumor heterogeneity, but also enhances tumor adaptation to environment and response to therapy. This article reviews the current status and potential significance of ecDNA in tumor cells.
.


Asunto(s)
Carcinogénesis , Oncogenes , Humanos , Neoplasias/genética , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...