Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(19)2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39409065

RESUMEN

This study aimed to investigate the effects of dietary bacteriophage administration on diarrhea and intestinal impairment induced by enterotoxigenic Escherichia coli (ETEC) in a newly weaned mouse model. Forty-four newly weaned C57BL/6 mice were divided into four treatment groups, where they were provided either the control diet or the bacteriophage-supplemented diet, with or without ETEC infection. The results show that the bacteriophage administration resulted in increased body weight, decreased diarrhea score, and improved jejunal histopathology in ETEC-infected mice. The bacteriophage administration enhanced the intestinal barrier function of the ETEC-infected mice, as indicated by the reduced serum DAO level and the increased expression of Claudin-1, Occludin, and ZO-1 at both the mRNA and protein levels in the jejunum. Also, the bacteriophage administration resulted in a decrease in serum TNF-α and IL-1ß levels, a down-regulation of TNF-α and IL-6 mRNA levels in the jejunum, and the inhibition of jejunal TLR-4/NF-κB pathway activation induced by ETEC infection. Moreover, the bacteriophage administration increased the levels of acetic acid, propionic acid, butyric acid, and total short-chain fatty acids in the caecum content. The bacteriophage administration increased the Shannon index, increased the abundance of Bacteroidota and Muribaculaceae, and decreased the abundance of Verrucomicrobiota and Akkermansiaceae in the colon contents of the ETEC-infected mice. Spearman's correlation analysis indicates that the protective effects of bacteriophage on ETEC-induced intestinal impairment, inflammation, and intestinal barrier function are associated with regulating the abundance of Bacteroidota and Muribaculaceae in the colon contents of mice. Collectively, bacteriophage administration alleviates ETEC-induced diarrhea and intestinal impairment through regulating intestinal inflammation and gut microbiota in newly weaned mice.


Asunto(s)
Bacteriófagos , Diarrea , Modelos Animales de Enfermedad , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Destete , Animales , Diarrea/terapia , Diarrea/microbiología , Diarrea/virología , Ratones , Infecciones por Escherichia coli/terapia , Bacteriófagos/fisiología , Inflamación , Masculino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología
2.
Food Funct ; 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39405052

RESUMEN

Epidemiological and animal studies have indicated that calcium and boron are essential for bone development and metabolism. However, limited information is available regarding the effects of boron supplementation on bone development and metabolism in newly weaned infants with either calcium deficiency or calcium sufficiency. This study assessed the effects of dietary boron supplementation (0 and 3 mg kg-1) on bone development and metabolism, in a newly weaned mouse model, under both calcium deficiency and sufficiency feeding conditions. The results show that mice fed a calcium sufficient diet exhibited lower fat percentage and final body weight than those fed a calcium deficient diet. Boron supplementation reduced the serum high-density lipoprotein cholesterol level and up-regulated the mRNA levels of FABP3, PPAR-γ, and CaMK in the intestinal mucosa. Importantly, boron supplementation increased the tibial weight in mice on a calcium-sufficient diet and enhanced the tibial volume in those on a calcium-deficient diet. Metabolomic analysis highlighted calcium and boron's impact on metabolites like carboxylic acids and derivatives, fatty acyls, steroids and steroid derivatives, benzene and substituted derivatives, organonitrogen compounds, organooxygen compounds, and phenols, and were related to lipid metabolism and the neural signaling pathway. Transcriptomic analysis corroborated the role of calcium and boron in modulating bone metabolism via the JAK-STAT, calcium signaling, lipid metabolism, and inflammatory pathways. Multi-omics analysis indicated a strong correlation between calcium signaling pathways, lipid metabolism signaling, and dietary calcium and boron contents. This research provides insights into these complex mechanisms, potentially paving the way for novel interventions against calcium and boron deficiencies and bone metabolism abnormalities in clinical settings.

3.
Anim Nutr ; 18: 220-233, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39281049

RESUMEN

At a global level, the supply of protein sources is insufficient to support the current magnitude of pig production. Moreover, given the exorbitant expense of conventional protein feed options like soybean meal and fish meal, it becomes imperative to promptly explore alternative sources of protein feed for the sustainable advancement of the pig industry. Cottonseed meal, a by-product from the extraction of cottonseed oil, exhibits significant potential as a protein source for pig feed owing to its high protein content, high yield, low cost, well-balanced amino acid composition, and sufficient accessibility. However, cottonseed meal possesses several anti-nutritional factors, especially gossypol, which adversely affect growth and reproductive performance, resulting in the limited utilization of cottonseed meal in pig feed. To maximize the benefits of cottonseed meal and promote its application in pig production, it is imperative to acquire comprehensive knowledge regarding its nutritional value and current utilization. In this review, we initially presented a summary of the nutritional values of cottonseed meal, primary anti-nutritional factors, and effective approaches for improving its utilization as a protein source feed. Subsequently, we comprehensively summarized the latest research progress of cottonseed meal application in pig nutrition over the past decade. The outcome of this review serves as a theoretical foundation and practical guidance for the research and application of cottonseed meal in pig nutrition and promotes the reduction of soybean meal utilization in the pig industry.

4.
Animals (Basel) ; 14(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39272383

RESUMEN

The antioxidant and immune systems of weaned piglets are not fully mature and are also subjected to serious stress challenges related to oxidative stress and inflammation. Selenium (Se) is an essential element for pigs, with documented roles encompassing antioxidative and anti-inflammatory properties via selenoproteins. Sodium selenite and Se-enriched yeast are commonly acknowledged as conventional sources of Se for piglets. In the past decade, several novel Se sources have emerged in the field of weaned piglet nutrition. In this review, we will initially outline the historical timeline of Se sources as reported in weaned piglet nutrition. Afterwards, our attention will turn towards the nutritional regulation of Se sources in relation to the antioxidant and anti-inflammatory aspects of healthy weaned piglets. Ultimately, we will provide a detailed review highlighting the potential of emerging Se sources in alleviating various adverse effects of stress challenges faced by weaned piglets. These challenges include oxidative stress, enterotoxigenic Escherichia coli infection, lipopolysaccharide-induced inflammation, heat stress, and exposure to feed mycotoxins. The output of this review will emphasize the fundamental importance of incorporating emerging Se sources in the diet of weaned piglets.

5.
iScience ; 27(3): 109249, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38450157

RESUMEN

Under conditions of dietary amino acid balance, decreasing the dietary crude protein (CP) level in pigs has a beneficial effect on meat quality. To further elucidate the mechanism, we explored the alteration of muscle fiber characteristics and key regulators related to myogenesis in the skeletal muscle of pigs fed a protein restricted diet. Compared to pigs fed a normal protein diet, dietary protein restriction significantly increased the slow-twitch muscle fiber proportion in skeletal muscle, succinic dehydrogenase (SDH) activity, the concentrations of ascorbate, biotin, palmitoleic acid, and the ratio of s-adenosylhomocysteine (SAM) to s-adenosylhomocysteine (SAH), but the fast-twitch muscle fiber proportion, lactate dehydrogenase (LDH) activity, the concentrations of ATP, glucose-6-phosphate, SAM, and SAH in skeletal muscle, and the ratio of serum triiodothyronine (T3) to tetraiodothyronine (T4) were decreased. In conclusion, we demonstrated that dietary protein restriction induced skeletal muscle fiber remodeling association the regulation of FGF21-ERK1/2-mTORC1 signaling in weaned piglets.

6.
Antioxidants (Basel) ; 13(3)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38539829

RESUMEN

This research evaluated the impacts of selenomethionine (Se-Met) on hepatic functions, oxidative stress, mitochondrial function, and apoptosis of piglets fed deoxynivalenol (DON)-contaminated diets. Twenty-four piglets were allocated four dietary treatments (n = 6) in a 28-day feeding trial. The four treatments included the control group, which received 0.3 mg/kg of Se (as Se-Met) without DON treatment, and the DON treatment groups received 0, 0.3, or 0.5 mg/kg Se as Se-Met. A dietary addition of 0.5 mg/kg Se improved liver pathology and reduced serum aspartate aminotransferase and lactate dehydrogenase levels in piglets fed DON-contaminated diets. Furthermore, 0.5 mg/kg Se mitigated the oxidative stress and apoptosis of piglets fed DON-contaminated diets, as indicated by the decreased reactive oxygen species level, and the down-regulated mRNA levels of NRF-1, Bax, and CASP9 in the liver. Importantly, 0.5 mg/kg Se enhanced the hepatic antioxidant capacity, as evidenced by increased hepatic total antioxidant capacity, catalase, glutathione peroxidase, and total superoxide dismutase activities, as well as the up-regulated mRNA levels of Nrf2, Gclm, NQO1, SOD1, and GPX1 in the liver. Moreover, 0.5 mg/kg Se down-regulated the p-JNK protein level in the liver of piglets fed DON-contaminated diets. Collectively, Se-Met supplementation mitigated liver dysfunction, oxidative injury, and apoptosis through enhancing antioxidant capacity and inhibiting the JNK MAPK pathway in piglets fed DON-contaminated diets.

7.
Antioxidants (Basel) ; 13(3)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38539889

RESUMEN

Deoxynivalenol (DON) is a prevalent contaminant in feed and food, posing a serious threat to the health of both humans and animals. The pig stands as an ideal subject for the study of DON due to its recognition as the most susceptible animal to DON. In this study, the IPEC-J2 cells were utilized as an in vitro model to explore the potential of SeMet in alleviating the intestinal toxicity and oxidative injury in intestinal epithelial cells when exposed to DON. Cells were treated either with or without 4.0 µM SeMet, in combination with or without a simultaneous treatment with 0.5 µg/mL DON, for a duration of 24 h. Then, cells or related samples were analyzed for cell proliferation, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) level, gene expressions, and protein expressions. The results showed that SeMet mitigated the cellular toxicity caused by DON, evidenced by elevated cell proliferation and the reduced LDH release of IPEC-J2 cells in the SeMet + DON group vs. the DON group. Moreover, the SeMet treatment markedly promoted antioxidant functions and decreased the oxidative injury in IPEC-J2 cell, which is indicated by the decreased ROS level and up-regulated mRNA levels of GPX1, TXNRD1, Nrf2, and GCLC in IPEC-J2 cells in the SeMet + DON group vs. the DON group. However, in both the absence and presence of exposure to DON, the SeMet treatment did not affect the protein expression of MAPK (JNK, Erk1/2, and P38) and phosphorylated MAPK (p-JNK, p-Erk1/2, and p-P38) in IPEC-J2 cells. Collectively, SeMet alleviated the DON-induced oxidative injury in porcine intestinal epithelial cells independent of the MAPK pathway regulation.

8.
Genes Dis ; 11(3): 101064, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38292170

RESUMEN

Fibroblast growth factor 21 (FGF21) was originally identified as an important metabolic regulator which plays a crucial physiological role in regulating a variety of metabolic parameters through the metabolic network. As a novel multifunctional endocrine growth factor, the role of FGF21 in the metabolic network warrants extensive exploration. This insight was obtained from the observation that the FGF21-dependent mechanism that regulates lipid metabolism, glycogen transformation, and biological effectiveness occurs through the coordinated participation of the liver, adipose tissue, central nervous system, and sympathetic nerves. This review focuses on the role of FGF21-uncoupling protein 1 (UCP1) signaling in lipid metabolism and how FGF21 alleviates non-alcoholic fatty liver disease (NAFLD). Additionally, this review reveals the mechanism by which FGF21 governs glucolipid metabolism. Recent research on the role of FGF21 in the metabolic network has mostly focused on the crucial pathway of glucolipid metabolism. FGF21 has been shown to have multiple regulatory roles in the metabolic network. Since an adequate understanding of the concrete regulatory pathways of FGF21 in the metabolic network has not been attained, this review sheds new light on the metabolic mechanisms of FGF21, explores how FGF21 engages different tissues and organs, and lays a theoretical foundation for future in-depth research on FGF21-targeted treatment of metabolic diseases.

9.
J Sci Food Agric ; 104(6): 3719-3728, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160249

RESUMEN

BACKGROUND: Skeletal muscle is a major insulin-sensitive tissue with a pivotal role in modulating glucose homeostasis. This study aimed to investigate the effect of resveratrol (RES) intervention during the suckling period on skeletal muscle growth and insulin sensitivity of neonates with intrauterine growth retardation (IUGR) in a pig model. RESULTS: Twelve pairs of normal birth weight (NBW) and IUGR neonatal male piglets were selected. The NBW and IUGR piglets were fed basal formula milk diet or identical diet supplemented with 0.1% RES from 7 to 21 days of age. Myofiber growth and differentiation, inflammation and insulin sensitivity in skeletal muscle were assessed. Early RES intervention promoted myofiber growth and maturity in IUGR piglets by ameliorating the myogenesis process and increasing thyroid hormone level. Administering RES also reduced triglyceride concentration in skeletal muscle of IUGR piglets, along with decreased inflammatory response, increased plasma fibroblast growth factor 21 (FGF21) concentration and improved insulin signaling. Meanwhile, the improvement of insulin sensitivity by RES may be partly regulated by activation of the FGF21/AMP-activated protein kinase α/sirtuin 1/peroxisome proliferator activated receptor-γ coactivator-1α pathway. CONCLUSION: Our results suggest that RES has beneficial effects in promoting myofiber growth and maturity and increasing skeletal muscle insulin sensitivity in IUGR piglets, which open a novel field of application of RES in IUGR infants for improving postnatal metabolic adaptation. © 2023 Society of Chemical Industry.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Resistencia a la Insulina , Femenino , Porcinos , Animales , Masculino , Humanos , Resveratrol/farmacología , Resveratrol/metabolismo , Hígado/metabolismo , Retardo del Crecimiento Fetal/tratamiento farmacológico , Retardo del Crecimiento Fetal/veterinaria , Retardo del Crecimiento Fetal/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Desarrollo de Músculos
10.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069273

RESUMEN

Fibroblast growth factor 21 (FGF21) plays a vital role in normal eukaryotic organism development and homeostatic metabolism under the influence of internal and external factors such as endogenous hormone changes and exogenous stimuli. Over the last few decades, comprehensive studies have revealed the key role of FGF21 in regulating many fundamental metabolic pathways, including the muscle stress response, insulin signaling transmission, and muscle development. By coordinating these metabolic pathways, FGF21 is thought to contribute to acclimating to a stressful environment and the subsequent recovery of cell and tissue homeostasis. With the emphasis on FGF21, we extensively reviewed the research findings on the production and regulation of FGF21 and its role in muscle metabolism. We also emphasize how the FGF21 metabolic networks mediate mitochondrial dysfunction, glycogen consumption, and myogenic development and investigate prospective directions for the functional exploitation of FGF21 and its downstream effectors, such as the mammalian target of rapamycin (mTOR).


Asunto(s)
Factores de Crecimiento de Fibroblastos , Transducción de Señal , Estudios Prospectivos , Factores de Crecimiento de Fibroblastos/metabolismo , Músculos/metabolismo
11.
Anim Sci J ; 94(1): e13895, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38031207

RESUMEN

Puerarin has possessed a wide range of pharmacological activities. However, little is known about the protective effects of puerarin on the oxidized oil-induced injury. Here, we describe the anti-inflammatory effects of puerarin in chickens. A total of 360 broilers were arranged in four treatments. Diets included two types of soybean oil (fresh or oxidized) and two levels of puerarin (0 or 750 mg/kg). Results showed that puerarin alleviated oxidized soybean oil-induced intestinal immune injury by decreasing the expressions of HSP and pro-inflammatory factor (P < 0.05) and enhancing the mRNA levels of anti-inflammatory factor and CATH-1 (P < 0.05) in broilers. Moreover, puerarin supplementation decreased the mRNA abundances of TLR4 and MyD88 (P < 0.05) and upregulated the expressions of A20 and SOCS-1 (P < 0.05) in the small intestine of oxidized soybean oil-challenged broilers. Collectively, this study demonstrates puerarin may be a potential nutrient supplement in the treatment of oxidized oil-induced damage in poultry.


Asunto(s)
Pollos , Aceite de Soja , Animales , Suplementos Dietéticos , Intestino Delgado , Dieta/veterinaria , Intestinos , Antiinflamatorios/farmacología , ARN Mensajero , Inmunidad , Alimentación Animal/análisis
12.
Antioxidants (Basel) ; 12(8)2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37627637

RESUMEN

Kaempferol, a secondary metabolite found in plants, is a naturally occurring flavonoid displaying significant potential in various biological activities. The chemical structure of kaempferol is distinguished by the presence of phenyl rings and four hydroxyl substituents, which make it an exceptional radical scavenger. Most recently, an increasing number of studies have demonstrated the significance of kaempferol in the regulation of intestinal function and the mitigation of intestinal inflammation. The focus of the review will primarily be on its impact in terms of antioxidant properties, inflammation, maintenance of intestinal barrier function, and its potential in the treatment of colorectal cancer and obesity. Future research endeavors should additionally give priority to investigating the specific dosage and duration of kaempferol administration for different pathological conditions, while simultaneously conducting deeper investigations into the comprehensible mechanisms of action related to the regulation of aryl hydrocarbon receptor (AhR). This review intends to present novel evidence supporting the utilization of kaempferol in the regulation of gut health and the management of associated diseases.

13.
Animals (Basel) ; 13(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37174509

RESUMEN

Animals with intrauterine growth retardation (IUGR) usually undergo injured postnatal growth and development during the early period after birth. Equol (Eq), an isoflavan produced by gut bacteria in response to daidzein intake, has various health benefits. Therefore, the objective of this study was to evaluate whether Eq supplementation can influence the growth performance, redox status, intestinal health and skeletal muscle development of weanling piglets with IUGR. A total of 10 normal-birth-weight (NBW) newborn female piglets and 20 newborn female piglets with IUGR were selected. After weaning at the age of 21 d, 10 NBW piglets and 10 IUGR piglets were allocated to the NBW group and IUGR group, respectively, and offered a basal diet. The other 10 IUGR piglets were allocated to the IUGR + Eq group and offered a basal diet with 50 mg of Eq per kg of diet. The whole trial lasted for 21 d. At the end of the feeding trial, all piglets were sacrificed for the collection of serum, intestinal tissues and skeletal muscles. Supplementation with Eq increased the average daily gain (ADG), average daily feed intake (ADFI), duodenal villus height to crypt depth ratio (V/C), jejunal villus height and V/C, but reduced the duodenal crypt depth in neonatal piglets with IUGR. Meanwhile, Eq supplementation elevated the activities of superoxide dismutase (SOD) and catalase (CAT) in the serum and duodenum and the activity of SOD in the jejunum, but lowered malondialdehyde (MDA) content in the serum, jejunum and ileum of piglets with IUGR. In addition, supplementation with Eq reduced diamine oxidase (DAO) activity and the levels of D-lactate and endotoxin in serum, and the tumor necrosis factor-α (TNF-α) level in jejunum and ileum, whereas the concentration of serum immunoglobulin G (IgG) and the mRNA levels of intestinal barrier-related markers in jejunum and ileum of IUGR piglets were increased. Furthermore, supplementation with Eq elevated the percentage of fast-fibers and was accompanied with higher mRNA expression of myosin heavy chain IIb (MyHC IIb) and lower mRNA levels in MyHC I in the longissimus thoracis (LT) muscle of IUGR piglets. In summary, Eq supplementation can promote antioxidant capacity, maintain intestinal health and facilitate skeletal muscle development, thus resulting in the higher growth performance of IUGR piglets.

14.
Animals (Basel) ; 13(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36899740

RESUMEN

Oxidative stress and in-feed antibiotics restrictions have accelerated the development of natural, green, safe feed additives for swine and poultry diets. Lycopene has the greatest antioxidant potential among the carotenoids, due to its specific chemical structure. In the past decade, increasing attention has been paid to lycopene as a functional additive for swine and poultry feed. In this review, we systematically summarized the latest research progress on lycopene in swine and poultry nutrition during the past ten years (2013-2022). We primarily focused on the effects of lycopene on productivity, meat and egg quality, antioxidant function, immune function, lipid metabolism, and intestinal physiological functions. The output of this review highlights the crucial foundation of lycopene as a functional feed supplement for animal nutrition.

15.
Anim Nutr ; 12: 96-107, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36632620

RESUMEN

Oxidative stress is a potentially critical factor that affects productive performance in gestating and lactating sows. Polyphenols are a large class of plant secondary metabolites that possess robust antioxidant capacity. All polyphenols are structurally characterized by aromatic rings with multiple hydrogen hydroxyl groups; those make polyphenols perfect hydrogen atoms and electron donors to neutralize free radicals and other reactive oxygen species. In the past decade, increasing attention has been paid to polyphenols as functional feed additives for sows. Polyphenols have been found to alleviate inflammation and oxidative stress in sows, boost their reproductivity, and promote offspring growth and development. In this review, we provided a systematical summary of the latest research advances in plant-derived polyphenols in sow nutrition, and mainly focused on the effects of polyphenols on the (1) antioxidant and immune functions of sows, (2) placental functions and the growth and development of fetal piglets, (3) mammary gland functions and the growth and development of suckling piglets, and (4) the long-term growth and development of progeny pigs. The output of this review provides an important foundation, from more than 8,000 identified plant phenols, to screen potential polyphenols (or polyphenol-enriched plants) as functional feed additives suitable for gestating and lactating sows.

16.
Int Immunopharmacol ; 114: 109538, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36502593

RESUMEN

This study aimed to investigate the effects of an organic acid (OA) blend on intestinal barrier function, intestinal inflammation, and gut microbiota in mice challenged with enterotoxigenic Escherichia coli K88 (ETEC K88). Ninety female Kunming mice (7 weeks old) were randomly allotted to five treatments with six replicates per treatment and three mice per replicate. The five treatments were composed of the non-ETEC K88 challenge group and ETEC K88 challenge + OA blend groups (0, 0.6 %, 1.2 %, and 2.4 % OA blend). The OA blend consisted of 47.5 % formic acid, 47.5 % benzoic acid, and 5 % tributyrin. The feeding trial lasted for 15 days, and mice were intraperitoneally injected with PBS or ETEC K88 solution on day 15. At 24 h post-challenge, one mouse per replicate was selected for sample collection. The results showed that a dosage of 0.6 % OA blend alleviated the ETEC K88-induced intestinal barrier dysfunction, as indicated by the elevated villus height and the ratio of villus height to crypt depth of jejunum, and the reduced serum diamine oxidase (DAO) and D-lactate levels, as well as the up-regulated mRNA levels of ZO-1, Claudin-1, and Occludin in jejunum mucosa of mice. Furthermore, dietary addition with 0.6 % OA blend decreased ETEC K88-induced inflammation response, as suggested by the decreased TNF-α and IL-6 levels, and the increased IgA level in the serum, as well as the down-regulated mRNA level of TNF-α, IL-6, IL-1ß, TLR-4, MyD88, and MCP-1 in jejunum mucosa of mice. Regarding gut microbiota, the beta-diversity analysis revealed a remarkable clustering between the 0.6 % OA blend group and the ETEC K88 challenge group. Supplementation of 0.6 % OA blend decreased the relative abundance of Firmicutes, and increased the relative abundance of Bacteroidota, Desulfobacterota, and Verrucomicrobiota of colonic digesta in mice. Also, the butyric acid content in the colonic digesta of mice was increased by dietary 0.6 % OA blend supplementation. Collectively, a dosage of 0.6 % OA blend could alleviate the ETEC K88-induced intestinal barrier dysfunction by regulating intestinal inflammation and gut microbiota of mice.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Enfermedades Intestinales , Ratones , Femenino , Animales , Infecciones por Escherichia coli/tratamiento farmacológico , Interleucina-6 , Modelos Animales de Enfermedad , Factor de Necrosis Tumoral alfa , Ácido Benzoico , Mucosa Intestinal , Escherichia coli Enterotoxigénica/fisiología , Inflamación/tratamiento farmacológico , ARN Mensajero
17.
Biomed Pharmacother ; 157: 114034, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36434956

RESUMEN

Polysaccharides from Enteromorpha prolifera (EP) possess important benefits in the management of obesity and associated metabolic diseases, but to date, the underlying mechanism linking this alleviative effect of EP to gut microbiota remains obscure. This study aimed to investigate the effects of EP in improving lipid metabolism disorders and intestinal barrier disruption in mice with high-fat diet (HFD), and its association with modulation of gut microbiota. C57BL/6 mice were fed a control diet or a HFD with or without 5% EP for 12 weeks. Factors related to lipid metabolism, insulin signaling and intestinal barrier integrity, as well as the involvement of gut microbiota and metabolites, were measured. EP supplementation reduced HFD-induced adiposity and mitigated insulin resistance, hepatic steatosis and elevation of serum lipopolysaccharides (LPS). HFD impaired intestinal barrier integrity while improved due to EP. Moreover, EP administration ameliorated HFD-induced gut dysbiosis, as revealed by the increased short-chain fatty acid (SCFA)-producing bacteria (e.g., Bacteroides, Parabacteroides, Alloprevotella, and Ruminococcus) and gut barrier-protective Akkermansia muciniphila and decreased endotoxin-producing bacteria (e.g., Desulfovibrionaceae and Bilophila), accompanied by enrichment in intestinal SCFA content and reduction in circulating LPS level. The change of dominant bacterial genera is significantly correlated with improved metabolic profiles and intestinal permeability induced by EP. In conclusion, our results indicate that EP can attenuate HFD-induced metabolic disorders along with restoration of gut barrier integrity and lowering of circulating endotoxin, and these improvements are associated with modulation of gut microbiota composition and related metabolites. These data deepen mechanistic understanding of the anti-obesity and metabolic improving effects of EP.


Asunto(s)
Hígado Graso , Microbioma Gastrointestinal , Enfermedades Metabólicas , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Ratones Obesos , Ratones Endogámicos C57BL , Obesidad/metabolismo , Lipopolisacáridos/farmacología
18.
Antioxidants (Basel) ; 11(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36552587

RESUMEN

The contamination of deoxynivalenol (DON) in feed is a global problem, which seriously threatens the productivity efficiency and welfare of farm animals and the food security of humans. Pig is the most sensitive species to DON, and is readily exposed to DON through its grain-enriched diet. The intestine serves as the first biological barrier to ingested mycotoxin, and is, therefore, the first target of DON. In the past decade, a growing amount of attention has been paid to plant-derived polyphenols as functional compounds against DON-induced oxidative stress and intestinal toxicity in pigs. In this review, we systematically updated the latest research progress in plant polyphenols detoxifying DON-induced intestinal toxicity in swine. We also discussed the potential underlying mechanism of action of polyphenols as Nrf2 activators in protecting against DON-induced enterotoxicity of swine. The output of this update points out an emerging research direction, as polyphenols have great potential to be developed as feed additives for swine to counteract DON-induced oxidative stress and intestinal toxicity.

19.
Front Nutr ; 8: 675640, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34164424

RESUMEN

This study aimed to investigate the effects of maternal methyl-donor micronutrient supplementation during gestation on gut microbiota and the fecal metabolic profile in offspring piglets. Forty-three Duroc × Erhualian gilts were assigned to two dietary groups during gestation: control diet (CON) and CON diet supplemented with MET (folic acid, methionine, choline, vitamin B6, and vitamin B12). The body weights of offspring piglets were recorded at birth and weaning. Besides this, fresh fecal samples of offspring piglets were collected at 7, 14, and 21 days. The gut microbiota composition, metabolic profile, and short-chain fatty acid (SCFA) profiles in the fecal samples were determined using 16S rDNA sequencing, liquid chromatography-mass spectrometry metabolomics, and gas chromatography methods, respectively. The results showed that maternal methyl-donor micronutrient supplementation increased the microbiota diversity and uniformity in feces of offspring piglets as indicated by increased Shannon and Simpson indices at 7 days, and greater Simpson, ACE, Chao1 and observed species indices at 21 days. Specifically, at the phylum level, the relative abundance of Firmicutes and the Firmicutes to Bacteroidetes ratio were elevated by maternal treatment. At the genus level, the relative abundance of SCFA-producing Dialister, Megasphaera, and Turicibacter, and lactate-producing Sharpea as well as Akkermansia, Weissella, and Pediococcus were increased in the MET group. The metabolic analyses show that maternal methyl-donor micronutrient addition increased the concentrations of individual and total SCFAs of 21-day piglets and increased metabolism mainly involving amino acids, pyrimidine, and purine biosynthesis. Collectively, maternal methyl-donor micronutrient addition altered gut microbiota and the fecal metabolic profile, resulting in an improved weaning weight of offspring piglets.

20.
Food Res Int ; 143: 110270, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33992371

RESUMEN

Curcumin (Cur) is a natural polyphenol with beneficial effect against obesity and related metabolic disorders, but its precise mechanisms of action remain to be defined due to its limited systemic bioavailability. We hypothesized that gut microbiota may be a prospective therapeutic target for Cur-induced metabolic benefits. This study aimed to investigate whether the metabolic adaptations resulting from Cur supplementation were mediated by the gut microbiota in high-fat diet (HFD)-fed obese mice. C57BL/6 mice were fed a control diet or a HFD diet with or without 0.2% Cur for 10 weeks. Lipid profiles, insulin sensitivity, hepatic metabolism, gut microbiota composition and short-chain fatty acid (SCFA) production were determined. Dietary Cur reduced fat mass, hepatic steatosis and circulating lipopolysaccharide levels and improved the insulin sensitivity in HFD-fed mice. More importantly, Cur supplementation modulated the gut microbiota composition and ameliorated intestinal dysbiosis by decreasing the ratio of Firmicutes/Bacteroidetes and endotoxin-producing Desulfovibrio bacteria and increasing the abundance of Akkermansia population and SCFA-producing bacteria, such as Bacteroides, Parabacteroides, Alistipes and Alloprevotella, along with increases in caecal and colonic SCFA concentrations. These dominant bacterial genera altered by Cur showed strong correlations with the obesity-related metabolic parameters in HFD-fed mice. In conclusion, our data suggest that Cur alleviated metabolic features of hepatic steatosis and insulin resistance in HFD-fed obese mice, which might be associated with the modulation of gut microbiota composition and metabolites.


Asunto(s)
Curcumina , Microbioma Gastrointestinal , Animales , Dieta Alta en Grasa , Ratones , Ratones Endogámicos C57BL , Obesidad , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...