Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35684296

RESUMEN

Ethylene plays a pivotal role in plant stress resistance and 1-aminocyclopropane-1-carboxylic acid synthase (ACS) is the rate-limiting enzyme in ethylene biosynthesis. Upland cotton (Gossypium hirsutum L.) is the most important natural fiber crop, but the function of ACS in response to abiotic stress has rarely been reported in this plant. We identified 18 GaACS, 18 GrACS, and 35 GhACS genes in Gossypiumarboreum, Gossypium raimondii and Gossypiumhirsutum, respectively, that were classified as types I, II, III, or IV. Collinearity analysis showed that the GhACS genes were expanded from diploid cotton by the whole-genome-duplication. Multiple alignments showed that the C-terminals of the GhACS proteins were conserved, whereas the N-terminals of GhACS10 and GhACS12 were different from the N-terminals of AtACS10 and AtACS12, probably diverging during evolution. Most type II ACS genes were hardly expressed, whereas GhACS10/GhACS12 were expressed in many tissues and in response to abiotic stress; for example, they were highly and hardly expressed at the early stages of cold and heat exposure, respectively. The GhACS genes showed different expression profiles in response to cold, heat, drought, and salt stress by quantitative PCR analysis, which indicate the potential roles of them when encountering the various adverse conditions, and provide insights into GhACS functions in cotton's adaptation to abiotic stress.

2.
BMC Plant Biol ; 22(1): 61, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35114937

RESUMEN

BACKGROUND: Cotton fiber is an important natural resource for textile industry and an excellent model for cell biology study. Application of glabrous mutant cotton and high-throughput sequencing facilitates the identification of key genes and pathways for fiber development and cell differentiation and elongation. LncRNA is a type of ncRNA with more than 200 nt in length and functions in the ways of chromatin modification, transcriptional and post-transcriptional modification, and so on. However, the detailed lncRNA and associated mechanisms for fiber initiation are still unclear in cotton. RESULTS: In this study, we used a novel glabrous mutant ZM24fl, which is endowed with higher somatic embryogenesis, and functions as an ideal receptor for cotton genetic transformation. Combined with the high-throughput sequencing, fatty acid pathway and some transcription factors such as MYB, ERF and bHLH families were identified the important roles in fiber initiation; furthermore, 3,288 lncRNAs were identified, and some differentially expressed lncRNAs were also analyzed. From the comparisons of ZM24_0 DPA vs ZM24_-2 DPA and fl_0 DPA vs ZM24_0 DPA, one common lncRNA MSTRG 2723.1 was found that function upstream of fatty acid metabolism, MBY25-mediating pathway, and pectin metabolism to regulate fiber initiation. In addition, other lncRNAs MSTRG 3390.1, MSTRG 48719.1, and MSTRG 31176.1 were also showed potential important roles in fiber development; and the co-expression analysis between lncRNAs and targets showed the distinct models of different lncRNAs and complicated interaction between lncRNAs in fiber development of cotton. CONCLUSIONS: From the above results, a key lncRNA MSTRG 2723.1 was identified that might mediate some key genes transcription of fatty acid metabolism, MYB25-mediating pathway, and pectin metabolism to regulate fiber initiation of ZM24 cultivar. Co-expression analysis implied that some other important lncRNAs (e.g., MSTRG 3390.1, MSTRG 48719.1, and MSTRG 31176.1) were also showed the different regulatory model and interaction between them, which proposes some valuable clues for the lncRNAs associated mechanisms in fiber development.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular/genética , Fibra de Algodón , Gossypium/crecimiento & desarrollo , Gossypium/genética , ARN Largo no Codificante/genética , Factores de Transcripción/genética , China , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación , RNA-Seq
3.
PeerJ ; 9: e11812, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34327061

RESUMEN

Upland cotton is the most widely planted for natural fiber around the world, and either lint percentage (LP) or fiber length (FL) is the crucial component tremendously affecting cotton yield and fiber quality, respectively. In this study, two lines MBZ70-053 and MBZ70-236 derived from G. hirsutum CCRI70 recombinant inbred line (RIL) population presenting different phenotypes in LP and FL traits were chosen to conduct RNA sequencing on ovule and fiber samples, aiming at exploring the differences of molecular and genetic mechanisms during cotton fiber initiation and elongation stages. As a result, 249/128, 369/206, 4296/1198 and 3547/2129 up-/down- regulated differentially expressed genes (DGEs) in L2 were obtained at -3, 0, 5 and 10 days post-anthesis (DPA), respectively. Seven gene expression profiles were discriminated using Short Time-series Expression Miner (STEM) analysis; seven modules and hub genes were identified using weighted gene co-expression network analysis. The DEGs were mainly enriched into energetic metabolism and accumulating as well as auxin signaling pathway in initiation and elongation stages, respectively. Meanwhile, 29 hub genes were identified as 14-3-3ω , TBL35, GhACS, PME3, GAMMA-TIP, PUM-7, etc., where the DEGs and hub genes revealed the genetic and molecular mechanisms and differences during cotton fiber development.

4.
Plant Physiol Biochem ; 147: 251-261, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31884241

RESUMEN

Cotton (Gossypium hirsutum) is an important cash crop, providing people with high quality natural fiber. Lignin is the main component of cotton fiber, second only to cellulose. As a main substance filled in the cellulose framework during the secondary wall thickening process, lignin plays a key role in the formation of cotton fiber quality. However, the mechanism behind it is still unclear. In this research, we screened candidate genes involved in lignin biosynthesis based on analysis of cotton genome and transcriptome sequence data. The authenticity of the transcriptome data was verified by qRT-PCR assay. Total 62 genes were identified from nine gene families. In the process, we found the key gene GhCAD7 that affects the biosynthesis of S-lignin and the ratio of syringyl/guaiacyl (S/G). In addition, in combination with the metabolites and transcriptome profiles of the line 0-153 with high fiber quality and the line sGK9708 with low fiber quality during cotton fiber development, we speculate that the ratio of syringyl/guaiacyl (S/G) is inseparable from the quality of cotton fiber. Finally, the S-type lignin synthesis branch may play a more important role in the formation of high-quality fiber. This work provides insights into the synthesis of lignin in cotton and lays the foundation for future research into improving fiber quality.


Asunto(s)
Fibra de Algodón , Genes de Plantas , Gossypium , Lignina , Celulosa/química , Fibra de Algodón/normas , Genes de Plantas/genética , Gossypium/química , Gossypium/genética , Lignina/biosíntesis , Lignina/genética , Investigación/tendencias , Transcriptoma
5.
Plant Biotechnol J ; 18(1): 239-253, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31199554

RESUMEN

Cotton is widely cultivated globally because it provides natural fibre for the textile industry and human use. To identify quantitative trait loci (QTLs)/genes associated with fibre quality and yield, a recombinant inbred line (RIL) population was developed in upland cotton. A consensus map covering the whole genome was constructed with three types of markers (8295 markers, 5197.17 centimorgans (cM)). Six fibre yield and quality traits were evaluated in 17 environments, and 983 QTLs were identified, 198 of which were stable and mainly distributed on chromosomes 4, 6, 7, 13, 21 and 25. Thirty-seven QTL clusters were identified, in which 92.8% of paired traits with significant medium or high positive correlations had the same QTL additive effect directions, and all of the paired traits with significant medium or high negative correlations had opposite additive effect directions. In total, 1297 genes were discovered in the QTL clusters, 414 of which were expressed in two RNA-Seq data sets. Many genes were discovered, 23 of which were promising candidates. Six important QTL clusters that included both fibre quality and yield traits were identified with opposite additive effect directions, and those on chromosome 13 (qClu-chr13-2) could increase fibre quality but reduce yield; this result was validated in a natural population using three markers. These data could provide information about the genetic basis of cotton fibre quality and yield and help cotton breeders to improve fibre quality and yield simultaneously.


Asunto(s)
Fibra de Algodón , Gossypium/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Marcadores Genéticos , Fenotipo , Fitomejoramiento , RNA-Seq
6.
Genes (Basel) ; 10(7)2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31336941

RESUMEN

Metacaspases (MCs) are cysteine proteases that are important for programmed cell death (PCD) in plants. In this study, we identified 89 MC genes in the genomes of four Gossypium species (Gossypium raimondii, Gossypium barbadense, Gossypium hirsutum, and Gossypium arboreum), and classified them as type-I or type-II genes. All of the type-I and type-II MC genes contain a sequence encoding the peptidase C14 domain. During developmentally regulated PCD, type-II MC genes may play an important role related to fiber elongation, while type-I genes may affect the thickening of the secondary wall. Additionally, 13 genes were observed to be differentially expressed between two cotton lines with differing fiber strengths, and four genes (GhMC02, GhMC04, GhMC07, and GhMC08) were predominantly expressed in cotton fibers at 5-30 days post-anthesis (DPA). During environmentally induced PCD, the expression levels of four genes were affected in the root, stem, and leaf tissues within 6 h of an abiotic stress treatment. In general, the MC gene family affects the development of cotton fibers, including fiber elongation and fiber thickening while four prominent fiber- expressed genes were identified. The effects of the abiotic stress and hormone treatments imply that the cotton MC gene family may be important for fiber development. The data presented herein may form the foundation for future investigations of the MC gene family in Gossypium species.


Asunto(s)
Caspasas/genética , Gossypium/genética , Proteínas de Plantas/genética , Secuencias de Aminoácidos , Apoptosis/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Fibra de Algodón , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Gossypium/enzimología , Familia de Multigenes , Filogenia , Regiones Promotoras Genéticas , Secuencias Repetitivas de Ácidos Nucleicos
7.
Genes (Basel) ; 10(7)2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31277527

RESUMEN

Microtubules (MTs) are of importance to fiber development. The Xklp2 (TPX2) proteins as a class of microtubule-associated proteins (MAPs) play a key role in plant growth and development by regulating the dynamic changes of microtubules (MTs). However, the mechanism underlying this is unknown. The interactions between TPX2 proteins and tubulin protein, which are the main structural components, have not been studied in fiber development of upland cotton. Therefore, a genome-wide analysis of the TPX2 family was firstly performed in Gossypiumhirsutum L. This study identified 41 GhTPX2 sequences in the assembled G. hirsutum genome by a series of bioinformatic methods. Generally, this gene family is phylogenetically grouped into six subfamilies, and 41 G. hirsutum TPX2 genes (GhTPX2s) are distributed across 21 chromosomes. A heatmap of the TPX2 gene family showed that homologous GhTPX2 genes, GhWDLA2/7 and GhWDLA4/9, have large differences in expression levels between two upland cotton recombinant inbred lines (69307 and 69362) that are different in fiber quality at 15 and 20 days post anthesis. The relative data indicate that these four genes are down-regulated under oryzalin, which causes microtubule depolymerization, as determined via qRT-PCR. A subcellular localization experiment suggested that GhWDLA2 and GhWDLA7 are localized to the microtubule cytoskeleton, and GhWDLA4 and GhWDLA9 are only localized to the nucleus. However, only GhWDLA7 between GhWDLA2 and GhWDLA7 interacted with GhTUA2 in the yeast two-hybrid assay. These results lay the foundation for further function study of the TPX2 gene family.


Asunto(s)
Gossypium/genética , Proteínas Asociadas a Microtúbulos/genética , Familia de Multigenes , Proteínas de Plantas/genética , Estructuras de las Plantas/genética , Filogenia , RNA-Seq , Transcriptoma , Técnicas del Sistema de Dos Híbridos
8.
Genes (Basel) ; 10(2)2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30736327

RESUMEN

Upland cotton (Gossypium hirsutum) is grown for its elite fiber. Understanding differential gene expression patterns during fiber development will help to identify genes associated with fiber quality. In this study, we used two recombinant inbred lines (RILs) differing in fiber quality derived from an intra-hirsutum population to explore expression profiling differences and identify genes associated with high-quality fiber or specific fiber-development stages using RNA sequencing. Overall, 72/27, 1137/1584, 437/393, 1019/184, and 2555/1479 differentially expressed genes were up-/down-regulated in an elite fiber line (L1) relative to a poor-quality fiber line (L2) at 10, 15, 20, 25, and 30 days post-anthesis, respectively. Three-hundred sixty-three differentially expressed genes (DEGs) between two lines were colocalized in fiber strength (FS) quantitative trait loci (QTL). Short Time-series Expression Miner (STEM) analysis discriminated seven expression profiles; gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation were performed to identify difference in function between genes unique to L1 and L2. Co-expression network analysis detected five modules highly associated with specific fiber-development stages, especially for high-quality fiber tissues. The hub genes in each module were identified by weighted gene co-expression network analysis. Hub genes encoding actin 1, Rho GTPase-activating protein with PAK-box, TPX2 protein, bHLH transcription factor, and leucine-rich repeat receptor-like protein kinase were identified. Correlation networks revealed considerable interaction among the hub genes, transcription factors, and other genes.


Asunto(s)
Fibra de Algodón/normas , Redes Reguladoras de Genes , Gossypium/genética , Sitios de Carácter Cuantitativo , Transcriptoma , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ARN/métodos
9.
BMC Plant Biol ; 19(1): 19, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-30634907

RESUMEN

BACKGROUND: Verticillium wilt (VW), also known as "cotton cancer," is one of the most destructive diseases in global cotton production that seriously impacts fiber yield and quality. Despite numerous attempts, little significant progress has been made in improving the VW resistance of upland cotton. The development of chromosome segment substitution lines (CSSLs) from Gossypium hirsutum × G. barbadense has emerged as a means of simultaneously developing new cotton varieties with high-yield, superior fiber, and resistance to VW. RESULTS: In this study, VW-resistant investigations were first conducted in an artificial greenhouse, a natural field, and diseased nursery conditions, resulting in the identification of one stably VW-resistant CSSL, MBI8255, and one VW-susceptible G. hirsutum, CCRI36, which were subsequently subjected to biochemical tests and transcriptome sequencing during V991 infection (0, 1, and 2 days after inoculation). Eighteen root samples with three replications were collected to perform multiple comparisons of enzyme activity and biochemical substance contents. The findings indicated that VW resistance was positively correlated with peroxidase and polyphenol oxidase activity, but negatively correlated with malondialdehyde content. Additionally, RNA sequencing was used for the same root samples, resulting in a total of 77,412 genes, of which 23,180 differentially expressed genes were identified from multiple comparisons between samples. After Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on the expression profiles identified using Short Time-series Expression Miner, we found that the metabolic process in the biological process, as well as the pathways of phenylpropanoid biosynthesis and plant hormone signal transduction, participated significantly in the response to VW. Gene functional annotation and expression quantity analysis indicated the important roles of the phenylpropanoid metabolic pathway and oxidation-reduction process in response to VW, which also provided plenty of candidate genes related to plant resistance. CONCLUSIONS: This study concentrates on the preliminary response to V991 infection by comparing the VW-resistant CSSL and its VW-susceptible recurrent parent. Not only do our findings facilitate the culturing of new resistant varieties with high yield and superior performance, but they also broaden our understanding of the mechanisms of cotton resistance to VW.


Asunto(s)
Cromosomas de las Plantas/genética , Gossypium/genética , Gossypium/microbiología , Transcriptoma/genética , Verticillium/patogenicidad , Regulación de la Expresión Génica de las Plantas/genética
10.
Gene ; 680: 72-83, 2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30253181

RESUMEN

GATA transcription factors (TFs), which bind to DNA in regulatory regions, are involved in cell differentiation and possess a type-IV zinc finger and a DNA-binding domain. GATA genes have been characterized in plant species such as Arabidopsis thaliana, Oryza sativa, and Glycine max, and their functions have been elucidated in A. thaliana. Although many Gossypium quantitative trait loci for fiber quality harbor GATA TFs, GATA genes have not yet been characterized in cotton. In this study, we identified 179 GATA genes from the genomes of three Gossypium species. We analyzed the phylogenetic relationships, chromosomal distribution, gene structure, expression pattern, and predicted promoters of all 179 Gossypium GATA genes (46 in G. raimondii, 46 in G. arboreum, and 87 in G. hirsutum). Phylogenetic analysis grouped the 179 GATA genes into four subfamilies. Domain analysis revealed that GATA domains in subfamilies I, II, and III were located near the C-terminal, whereas those in subfamily IV were adjacent to the N-terminal. RNA-seq and (Real-time PCR) qRT-PCR revealed that 39.1% (34/87) of GATA genes were expressed in growing plant tissues in G. hirsutum, but only 12.6% (11/87) were expressed during fiber development. In addition, 45.7% (21/46) and 26.1% (12/46) of GATA genes were expressed in G. arboreum and G. raimondii, respectively. Our results may be useful for elucidating the evolution, expression patterns, and functional divergence of GATA genes in Gossypium.


Asunto(s)
Factores de Transcripción GATA/genética , Perfilación de la Expresión Génica/métodos , Gossypium/clasificación , Gossypium/crecimiento & desarrollo , Análisis de Secuencia de ARN/métodos , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Regiones Promotoras Genéticas
11.
Front Plant Sci ; 9: 1067, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30283462

RESUMEN

It is of great importance to identify quantitative trait loci (QTL) controlling fiber quality traits and yield components for future marker-assisted selection (MAS) and candidate gene function identifications. In this study, two kinds of traits in 231 F6:8 recombinant inbred lines (RILs), derived from an intraspecific cross between Xinluzao24, a cultivar with elite fiber quality, and Lumianyan28, a cultivar with wide adaptability and high yield potential, were measured in nine environments. This RIL population was genotyped by 122 SSR and 4729 SNP markers, which were also used to construct the genetic map. The map covered 2477.99 cM of hirsutum genome, with an average marker interval of 0.51 cM between adjacent markers. As a result, a total of 134 QTLs for fiber quality traits and 122 QTLs for yield components were detected, with 2.18-24.45 and 1.68-28.27% proportions of the phenotypic variance explained by each QTL, respectively. Among these QTLs, 57 were detected in at least two environments, named stable QTLs. A total of 209 and 139 quantitative trait nucleotides (QTNs) were associated with fiber quality traits and yield components by four multilocus genome-wide association studies methods, respectively. Among these QTNs, 74 were detected by at least two algorithms or in two environments. The candidate genes harbored by 57 stable QTLs were compared with the ones associated with QTN, and 35 common candidate genes were found. Among these common candidate genes, four were possibly "pleiotropic." This study provided important information for MAS and candidate gene functional studies.

12.
Gene ; 646: 28-38, 2018 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-29278771

RESUMEN

The cellulose synthase gene superfamily, which includes the cellulose synthase (Ces) and cellulose synthase-like (Csl) families, is involved in the synthesis of cellulose and hemicellulose. This superfamily is critical for cotton fiber development in Gossypium species. Applying a series of bioinformatic methods, we identified 228 Ces/Csl genes from four Gossypium species (G. hirsutum, G. barbadense, G. arboreum, and G. raimondii). These genes were then grouped into 11 subfamilies based on phylogenetic relationships. A subsequent analysis of gene evolution revealed sites in CSLG and CSLJ genes that were under long-term positive selection pressure, with a posterior probability >0.95. Moreover, the dN:dS value for the CSLJ clade was 1.305, suggesting this subfamily was under positive selection pressure. Our data indicated that the dN:dS value ranged from 0.0084 to 0.9693 among the homologous Ces/Csl genes, implying they were under purifying selection pressure. Our transcriptome and qRT-PCR analyses revealed that CesA genes were more highly expressed in tetraploids than in diploids. However, the Csl expression levels exhibited the opposite trend. Furthermore, changes to promoter sequences may have influenced the expression of homologous Ces/Csl genes. Our findings may provide novel insights into the evolutionary relationships and expression patterns of the Ces/Csl genes in Gossypium species.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Glucosiltransferasas/genética , Gossypium/crecimiento & desarrollo , Familia de Multigenes , Mapeo Cromosómico , Evolución Molecular , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Gossypium/enzimología , Gossypium/genética , Filogenia , Proteínas de Plantas/genética , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...