Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(5): 319, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710705

RESUMEN

Argininosuccinate synthase (ASS1), a critical enzyme in the urea cycle, acts as a tumor suppressor in many cancers. To date, the anticancer mechanism of ASS1 has not been fully elucidated. Here, we found that phosphoglycerate dehydrogenase (PHGDH), a key rate-limiting enzyme in serine synthesis, is a pivotal protein that interacts with ASS1. Our results showed that ASS1 directly binds to PHGDH and promotes its ubiquitination-mediated degradation to inhibit serine synthesis, consequently suppressing tumorigenesis. Importantly, the tumor suppressive effects of ASS1 were strongly abrogated by PHGDH knockout. In addition, ASS1 knockout and knockdown partially rescued cell proliferation when serine and glycine were depleted, while the inhibitory effect of ASS1 overexpression on cell proliferation was restored by the addition of serine and glycine. These findings unveil a novel role of ASS1 and suggest that the ASS1/PHGDH serine synthesis pathway is a promising target for cancer therapy.


Asunto(s)
Argininosuccinato Sintasa , Proliferación Celular , Fosfoglicerato-Deshidrogenasa , Serina , Neoplasias de la Mama Triple Negativas , Fosfoglicerato-Deshidrogenasa/metabolismo , Fosfoglicerato-Deshidrogenasa/genética , Serina/metabolismo , Serina/biosíntesis , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/genética , Animales , Argininosuccinato Sintasa/metabolismo , Argininosuccinato Sintasa/genética , Línea Celular Tumoral , Ratones Desnudos , Ubiquitinación , Ratones , Glicina/metabolismo
2.
J Nat Prod ; 86(9): 2111-2121, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37682035

RESUMEN

Spinosyn A (SPA), derived from a soil microorganism, Saccharopolyspora spinosa, and its derivative, LM2I, has potential inhibitory effects on a variety of cancer cells. However, the effects of SPA and LM2I in inhibiting the growth of human colorectal cancer cells and the molecular mechanisms underlying these effects are not fully understood. Cell viability was tested by using a 3-(4,5-dimethylthiazol-2-yl-)-2,5-diphenyltetrazolium bromide (MTT) assay and a colony formation assay. On the basis of the IC50 values of SPA and LM2I in seven colorectal cancer (CRC) cell lines, sensitive (HT29 and SW480) and insensitive (SW620 and RKO) cell lines were screened. The GSE2509 and GSE10843 data sets were used to identify 69 differentially expressed genes (DEGs) between sensitive and insensitive cell lines. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interactions (PPI) were performed to elucidate the molecular mechanisms of the DEGs. The hub gene of the DEGs was detected by Western blot analysis and verified using the CRISPR/Cas9 system. Our data indicate that SPA and its derivative LM2I have significant antiproliferative activity in seven colorectal cancer cell lines and colorectal xenograft tumors. On the basis of bioinformatics analysis, it was demonstrated that epidermal growth factor receptor (EGFR) was the hub gene of the DEGs and was associated with the inhibitory effects of SPA and LM2I in CRC cell lines. The study also revealed that SPA and LM2I inhibited the EGFR pathway in vitro and in vivo.


Asunto(s)
Neoplasias Colorrectales , Macrólidos , Humanos , Receptores ErbB , Bioensayo , Neoplasias Colorrectales/tratamiento farmacológico
3.
Front Oncol ; 13: 1112104, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124502

RESUMEN

Background: Pancreatic cancer is one of most aggressive malignancies with a dismal prognosis. Activation of PI3K/AKT signaling is instrumental in pancreatic cancer tumorigenesis. The aims of this study were to identify the molecular clustering, prognostic value, relationship with tumor immunity and targeting of PI3K/AKT-related genes (PARGs) in pancreatic cancer using bioinformatics. Methods: The GSEA website was searched for PARGs, and pancreatic cancer-related mRNA data and clinical profiles were obtained through TCGA downloads. Prognosis-related genes were identified by univariate Cox regression analysis, and samples were further clustered by unsupervised methods to identify significant differences in survival, clinical information and immune infiltration between categories. Next, a prognostic model was constructed using Lasso regression analysis. The model was well validated by univariate and multivariate Cox regression analyses, Kaplan-Meier survival analysis and ROC curves, and correlations between risk scores and patient pathological characteristics were identified. Finally, GSEA, drug prediction and immune checkpoint protein analyses were performed. Results: Pancreatic cancers were divided into Cluster 1 (C1) and Cluster 2 (C1) according to PARG mRNA expression. C1 exhibited longer overall survival (OS) and higher immune scores and CTLA4 expression, whereas C2 exhibited more abundant PD-L1. A 6-PARG-based prognostic model was constructed to divide pancreatic cancer patients into a high-risk score (HRS) group and a low-risk score (LRS) group, where the HRS group exhibited worse OS. The risk score was defined as an independent predictor of OS. The HRS group was significantly associated with pancreatic cancer metastasis, aggregation and immune score. Furthermore, the HRS group exhibited immunosuppression and was sensitive to radiotherapy and guitarbine chemotherapy. Multidrug sensitivity prediction analysis indicated that the HRS group may be sensitive to PI3K/AKT signaling inhibitors (PIK-93, GSK2126458, CAL-101 and rapamycin) and ATP concentration regulators (Thapsigargin). In addition, we confirmed the oncogenic effect of protein phosphatase 2 regulatory subunit B'' subunit alpha (PPP2R3A) in pancreatic cancer in vitro and in vivo. Conclusions: PARGs predict prognosis, tumor immune profile, radiotherapy and chemotherapy drug sensitivity and are potential predictive markers for pancreatic cancer treatment that can help clinicians make decisions and personalize treatment.

4.
Cancers (Basel) ; 15(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37173892

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, with shorter five-year survival than other breast cancer subtypes, and lacks targeted and hormonal treatment strategies. The signal transducer and activator of transcription 3 (STAT3) signaling is up-regulated in various tumors, including TNBC, and plays a vital role in regulating the expression of multiple proliferation- and apoptosis-related genes. RESULTS: By combining the unique structures of the natural compounds STA-21 and Aulosirazole with antitumor activities, we synthesized a class of novel isoxazoloquinone derivatives and showed that one of these compounds, ZSW, binds to the SH2 domain of STAT3, leading to decreased STAT3 expression and activation in TNBC cells. Furthermore, ZSW promotes STAT3 ubiquitination, inhibits the proliferation of TNBC cells in vitro, and attenuates tumor growth with manageable toxicities in vivo. ZSW also decreases the mammosphere formation of breast cancer stem cells (BCSCs) by inhibiting STAT3. CONCLUSIONS: We conclude that the novel isoxazoloquinone ZSW may be developed as a cancer therapeutic because it targets STAT3, thereby inhibiting the stemness of cancer cells.

5.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35890172

RESUMEN

Breast cancer is one of the most prevalent malignancies with poor prognosis. Inhibition of angiogenesis is becoming a valid and evident therapeutic strategy to treat cancer. Recent studies uncovered the antiangiogenic activity of ZLM-7 (a combretastain A-4 derivative), but the regulatory mechanism is unclear. ZLM-7 treatment was applied in estrogen receptor-positive cell MCF-7, triple-negative breast cancer cell MDA-MB-231 and xenograft models. Transfections were conducted to overexpress or knockdown targeted genes. The gene and protein expressions were measured by qPCR and Western blotting assay, respectively. Cell proliferation and apoptosis were evaluated using the CCK8 method, clone formation assay and flow cytometry. We found that ZLM-7 upregulated 14-3-3 sigma expression but downregulated MDM2 expression in breast cancer cells. ZLM-7 delayed cell proliferation, promoted apoptosis and blocked cell-cycle progression in human breast cancer cells in vitro, while those effects were abolished by 14-3-3 sigma knockdown; overexpression of 14-3-3 sigma reproduced the actions of ZLM-7 on the cell cycle, which could be reversed by MDM2 overexpression. In xenograft models, ZLM-7 treatment significantly inhibited tumor growth while the inhibition was attenuated when 14-3-3 sigma was silenced. Collectively, ZLM-7 could inhibit MDM2 via upregulating 14-3-3 sigma expression, thereby blocking the breast cancer progression.

6.
Nat Commun ; 12(1): 2263, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33859183

RESUMEN

Argininosuccinate synthase (ASS1) is a ubiquitous enzyme in mammals that catalyzes the formation of argininosuccinate from citrulline and aspartate. ASS1 genetic deficiency in patients leads to an autosomal recessive urea cycle disorder citrullinemia, while its somatic silence or down-regulation is very common in various human cancers. Here, we show that ASS1 functions as a tumor suppressor in breast cancer, and the pesticide spinosyn A (SPA) and its derivative LM-2I suppress breast tumor cell proliferation and growth by binding to and activating ASS1. The C13-C14 double bond in SPA and LM-2I while the Cys97 (C97) site in ASS1 are critical for the interaction between ASS1 and SPA or LM-2I. SPA and LM-2I treatment results in significant enhancement of ASS1 enzymatic activity in breast cancer cells, particularly in those cancer cells with low ASS1 expression, leading to reduced pyrimidine synthesis and consequently the inhibition of cancer cell proliferation. Thus, our results establish spinosyn A and its derivative LM-2I as potent ASS1 enzymatic activator and tumor inhibitor, which provides a therapeutic avenue for tumors with low ASS1 expression and for those non-tumor diseases caused by down-regulation of ASS1.


Asunto(s)
Argininosuccinato Sintasa/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Citrulinemia/tratamiento farmacológico , Activadores de Enzimas/farmacología , Macrólidos/farmacología , Proteínas Supresoras de Tumor/agonistas , Adulto , Anciano , Animales , Argininosuccinato Sintasa/genética , Argininosuccinato Sintasa/aislamiento & purificación , Ácido Aspártico/metabolismo , Mama/patología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citrulina/metabolismo , Citrulinemia/genética , Activadores de Enzimas/uso terapéutico , Femenino , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Macrólidos/uso terapéutico , Metabolómica , Ratones , Persona de Mediana Edad , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Pirimidinas/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Mol Med ; 26(1): 109, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33187481

RESUMEN

BACKGROUND: Breast cancer (BC) is a common malignant tumor with poor prognosis. Angiogenesis is related to the growth and progression of solid tumors and associated with prognosis. ZLM-7, SP1, VEGFA and miR-212-3p were associated with BC angiogenesis and proliferation, however the detailed mechanism was not clear. This study aimed to reveal the regulatory mechanism of angiogenesis of BC. METHODS: BC cell lines were treated with 10 nM ZLM-7 for 8 h. We detected protein expression level by western blot and RNA expression level by qRT-PCR. Overexpression or inhibition of miR-212-3p is performed using miR-212-3p mimics or miR-212-3p inhibitor, Sp1 overexpression using pcDNA3.1 vector. Angiogenesis was analyzed by co-culturing BC cell lines and HUVEC cells. To evaluate regulatory relationship between miR-212-3p and Sp1, dual luciferase assay was performed. Besides, the direct interaction between Sp1 and VEGFA was analyzed by ChIP. Migration and invasion were analyzed by transwell assay and proliferation was detected by clone formation assay. In mice xenograft model developed using BC cells, we also detected angiogenesis marker CD31 through immunohistochemistry. RESULTS: ZLM-7 up-regulated miR-212-3p and inhibited invasion, migration, proliferation and angiogenesis of BC, while miR-212-3p inhibitor antagonized such effects. Binding sequence was revealed between miR-212-3p and Sp1, and expression of Sp1 was inhibited by miR-212-3p on both protein and mRNA level. Sp1 could interact with VEGFA and promoted its expression. Overexpression of miR-212-3p inhibited migration, invasion, proliferation and angiogenesis of BC cell lines, while Sp1 overexpression showed the opposite effect and could antagonize these effects of miR-212-3p overexpression. ZLM-7 decreased VEGFA expression, which was rescued by co-transfection with miR-212-3p inhibitor. Similar, ZLM-7 could inhibit tumor growth and angiogenesis through the miR-212-3p/Sp1/VEGFA axis in vivo. CONCLUSIONS: ZLM-7 could directly up-regulate miR-212-3p in BC. MiR-212-3p could inhibit VEGFA expression through Sp1, thereby inhibiting angiogenesis and progression of BC.


Asunto(s)
Compuestos de Anilina/farmacología , Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Neovascularización Patológica/genética , Factor de Transcripción Sp1/genética , Sulfuros/farmacología , Factor A de Crecimiento Endotelial Vascular/genética , Regiones no Traducidas 3' , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Femenino , Humanos , Neovascularización Patológica/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción Sp1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
Acta Biochim Biophys Sin (Shanghai) ; 52(11): 1257-1264, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33128544

RESUMEN

Arginase I (ARG1) is a cytosolic enzyme that catalyzes the hydrolysis of L-arginine to L-ornithine and urea. The association of ARG1 with cancer has mostly been focused on the ARG1 released by tumor-associated myeloid cells in tumor microenvironment. However, the role of ARG1 expressed in cancer cells is unclear. Here, we showed that the expression of ARG1 in human breast cancer (BC) is related to a good prognosis in BC patients. Overexpression of ARG1 suppresses BC cell proliferation and migration in vitro and xenograft tumor growth and development in mouse models. Furthermore, ARG1 expression down-regulates the expression of p-AKT, leading to the de-activation of AKT signal pathway in BC cells. Thus, our results established that in contrast to the role of ARG1 released from tumor-associated myeloid cells in tumor microenvironment that promotes tumor immune escape, ARG1 expressed in BC cells suppresses AKT signaling pathway and functions as a tumor suppressor.


Asunto(s)
Arginasa/biosíntesis , Arginasa/genética , Neoplasias de la Mama/metabolismo , Animales , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Genes Supresores de Tumor , Xenoinjertos/patología , Xenoinjertos/trasplante , Humanos , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/genética
9.
Bioorg Med Chem Lett ; 30(16): 127286, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32631508

RESUMEN

Natural quinones and their analogues have attracted growing attention because of their novel anticancer activities. A series of novel isothiazoloquinoline quinone analogues were synthesized and evaluated for antitumor activities against four different kind of cancer cells. Among them, isothiazoloquinolinoquinones inhibited cancer cells proliferation effectively with IC50 values in the nanomolar range, and isothiazoloquinolinoquinone 13a induced the cell apoptosis. Further exploration of possible mechanism of action indicates that 13a not only activates ROS production through NQO1-directed redox cycling but also inhibits the phosphorylation of STAT3. These findings indicate that 13a has potential use for the development of new skeleton drug candidate as an efficient substrate of NQO1 and STAT3 inhibitor.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , Quinonas/farmacología , Factor de Transcripción STAT3/antagonistas & inhibidores , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Oxidación-Reducción , Quinonas/síntesis química , Quinonas/química , Factor de Transcripción STAT3/metabolismo , Relación Estructura-Actividad
10.
Oncotarget ; 7(14): 19018-30, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26967559

RESUMEN

Inhibition of angiogenesis is a promising therapeutic strategy against cancer. In this study, we reported that ZLM-7, a combretastain A-4 (CA-4) derivative, exhibited anti-angiogenic activity in vitro and in vivo. In vitro, ZLM-7 induced microtubule cytoskeletal disassembly. It decreased VEGF-induced proliferation, migration, invasion and tube formation in endothelial cells, which are critical steps in angiogenesis. In vivo, ZLM-7 significantly inhibited neovascularization in a chicken chorioallantoic membrane (CAM) model and reduced the microvessel density in tumor tissues of MCF-7 xenograft mouse model. ZLM-7 also displayed comparable antiangiogenic and anti-tumor activities associated with the lead compound CA-4, but exhibited lower toxicity compared with CA-4. The anti-angiogenic effect of ZLM-7 was exerted via blockade of VEGF/VEGFR-2 signaling. ZLM-7 treatment suppressed the expression and secretion of VEGF in endothelial cells and MCF-7 cells under hypoxia. Further, ZLM-7 suppressed the VEGF-induced phosphorylation of VEGFR-2 and its downstream signaling mediators including activated AKT, MEK and ERK in endothelial cells. Overall, these results demonstrate that ZLM-7 exhibits anti-angiogenic activities by impairing endothelial cell function and blocking VEGF/VEGFR-2 signaling, suggesting that ZLM-7 might be a potential angiogenesis inhibitor.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Compuestos de Anilina/farmacología , Antineoplásicos Fitogénicos/farmacología , Sulfuros/farmacología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Proliferación Celular/efectos de los fármacos , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células MCF-7 , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neovascularización Patológica/tratamiento farmacológico , Fosforilación , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
11.
Biotechnol Biotechnol Equip ; 28(5): 798-804, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26019563

RESUMEN

There are more than 2000 ramie germplasms in the National Ramie Germplasm Nursery affiliated with the Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, China. As it is difficult to perform effective conservation, management, evaluation, and utilization of redundant genetic resources, it is necessary to construct a core collection by using molecular markers. In this study, a core collection of ramie consisting of 22 germplasms was constructed from 108 accessions by heuristic search based on 21 Simple Sequence Repeat (SSR) marker combinations. The results showed that there is a poor relationship between the core collection and the geographic distribution. The number of amplification bands for the core collection was the same as that for the entire collection. Shannon's index for three of the SSR primers (14%) and Nei's index for nine of the SSR primers (19%) were lower in the core collection than in the entire collection. The true core collection had wider genetic diversity compared with the random core collection. Collectively, the core collection constructed in this study is reliable and represents the genetic diversity of all the 108 accessions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...