Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Malar J ; 20(1): 67, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531024

RESUMEN

BACKGROUND: Malaria persists as a huge medical and economic burden. Although the number of cases and death rates have reduced in recent years, novel interventions are a necessity if such gains are to be maintained. Alternative methods to target mosquito vector populations that involve the release of large numbers genetically modified mosquitoes are in development. However, their successful introduction will require innovative strategies to bulk-up mosquito numbers and improve mass rearing protocols for Anopheles mosquitoes. METHODS: The relationship between mosquito aquatic stage development and temperature was exploited so that multiple cohorts of mosquitoes, from separate egg batches, could be synchronized to 'bulk-up' the number of mosquitoes released. First instar larvae were separated into two cohorts: the first, maintained under standard insectary conditions at 27oC, the second subjected to an initial 5-day cooling period at 19oC. RESULTS: Cooling of 1st instars slowed the mean emergence times of Anopheles coluzzii and Anopheles gambiae by 2.4 and 3.5 days, respectively, compared to their 27oC counterparts. Pupation and emergence rates were good (> 85 %) in all conditions. Temperature adjustment had no effect on mosquito sex ratio and adult fitness parameters such as body size and mating success. CONCLUSIONS: Bulk-up larval synchronization is a simple method allowing more operational flexibility in mosquito production towards mark-release-recapture studies and mass release interventions.


Asunto(s)
Anopheles/fisiología , Frío , Conducta Sexual Animal , Animales , Anopheles/crecimiento & desarrollo , Tamaño Corporal , Femenino , Larva/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA