Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
2.
Adv Sci (Weinh) ; 11(38): e2401502, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39120068

RESUMEN

Multifaceted interrogation of the proteome deepens the system-wide understanding of biological systems; however, mapping the redox changes in the proteome has so far been significantly more challenging than expression and solubility/stability analyses. Here, the first high-throughput redox proteomics approach integrated with expression analysis (REX) is devised and combined with the Proteome Integral Solubility Alteration (PISA) assay. The whole PISA-REX experiment with up to four biological replicates can be multiplexed into a single tandem mass tag TMTpro set. For benchmarking this compact tool, HCT116 cells treated with auranofin are analyzed, showing great improvement compared with previous studies. PISA-REX is then applied to study proteome remodeling upon stimulation of human monocytes by interferon α (IFN-α). Applying this tool to study the proteome changes in plasmacytoid dendritic cells (pDCs) isolated from wild-type versus Ncf1-mutant mice treated with interferon α, shows that NCF1 deficiency enhances the STAT1 pathway and modulates the expression, solubility, and redox state of interferon-induced proteins. Providing comprehensive multifaceted information on the proteome, the compact PISA-REX has the potential to become an industry standard in proteomics and to open new windows into the biology of health and disease.


Asunto(s)
Oxidación-Reducción , Proteoma , Proteómica , Solubilidad , Animales , Ratones , Proteoma/metabolismo , Humanos , Proteómica/métodos , Interferón-alfa/metabolismo , Interferón-alfa/genética , Interferón-alfa/farmacología , Células Dendríticas/metabolismo
4.
Anal Chem ; 96(33): 13533-13541, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39110629

RESUMEN

Here, we present a high-throughput virtual top-down proteomics approach that restores the molecular weight (MW) information in shotgun proteomics and demonstrates its utility in studying proteolytic events in programmed cell death. With gel-assisted proteome position integral shift (GAPPIS), we quantified over 7000 proteins in staurosporine-induced apoptotic HeLa cells and identified 84 proteins exhibiting in a statistically significant manner at least two of the following features: (i) a negative MW shift; (ii) an elevated ratio in a pair of a semitryptic and tryptic peptide, (iii) a negative shift in the standard deviation of MW estimated for different peptides, and (iv) a negative shift in skewness of the same data. Of these proteins, 58 molecules were previously unreported caspase 3 substrates. Further analysis identified the preferred cleavage sites consistent with the known caspase cleavages after the DXXD motif. As a powerful tool for high-throughput MW analysis simultaneously with the conventional expression analysis, the GAPPIS assay can prove useful in studying a broad range of biological processes involving proteolytic events.


Asunto(s)
Caspasa 3 , Peso Molecular , Proteómica , Humanos , Proteómica/métodos , Células HeLa , Caspasa 3/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Especificidad por Sustrato , Apoptosis/efectos de los fármacos , Estaurosporina/farmacología
5.
Anal Chem ; 96(29): 12057-12064, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-38979842

RESUMEN

De novo sequencing of any novel peptide/protein is a difficult task. Full sequence coverage, isomeric amino acid residues, inter- and intramolecular S-S bonds, and numerous other post-translational modifications make the investigators employ various chemical modifications, providing a variety of specific fragmentation MSn patterns. The chemical processes are time-consuming, and their yields never reach 100%, while the subsequent purification often leads to the loss of minor components of the initial peptide mixture. Here, we present the advantages of the EThcD method that enables establishing the full sequence of natural intact peptides of ranid frogs in de novo top-down mode without any chemical modifications. The method provides complete sequence coverage, including the cyclic disulfide section, and reliable identification of isomeric leucine/isoleucine residues. The proposed approach demonstrated its efficiency in the analysis of peptidomes of ranid frogs from several populations of Rana arvalis, Rana temporaria, and Pelophylax esculentus complexes.


Asunto(s)
Péptidos , Ranidae , Animales , Péptidos/química , Péptidos/análisis , Péptidos/metabolismo , Secuencia de Aminoácidos , Análisis de Secuencia de Proteína/métodos , Proteínas Anfibias/química , Proteínas Anfibias/metabolismo
6.
Methods Mol Biol ; 2817: 33-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38907145

RESUMEN

Mass spectrometry-based proteomics has traditionally been limited by the amount of input material for analysis. Single-cell proteomics has emerged as a challenging discipline due to the ultra-high sensitivity required. Isobaric labeling-based multiplex strategies with a carrier proteome offer an approach to overcome the sensitivity limitations. Following this as the basic strategy, we show here the general workflow for preparing cells for single-cell mass spectrometry-based proteomics. This protocol can also be applied to manually isolated cells when large cells, such as cardiomyocytes, are difficult to isolate properly with conventional fluorescence-activated cell sorting (FACS) sorter methods.


Asunto(s)
Proteómica , Análisis de la Célula Individual , Proteómica/métodos , Análisis de la Célula Individual/métodos , Humanos , Espectrometría de Masas/métodos , Citometría de Flujo/métodos , Proteoma/análisis , Animales , Marcaje Isotópico/métodos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Coloración y Etiquetado/métodos
7.
Methods Mol Biol ; 2817: 133-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38907152

RESUMEN

Nontargeted single-cell proteomics analysis by mass spectrometry with sample multiplexing utilizing isobaric labeling is often performed using a carrier proteome. The presented protocol describes a targeted approach that replaces the carrier proteome with a set of synthetic peptides from selected proteins, which improves the identification and quantification of these proteins in single human cells.


Asunto(s)
Espectrometría de Masas , Proteoma , Proteómica , Análisis de la Célula Individual , Proteómica/métodos , Análisis de la Célula Individual/métodos , Humanos , Espectrometría de Masas/métodos , Proteoma/análisis , Péptidos/química , Péptidos/metabolismo , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos
8.
Endocr Relat Cancer ; 31(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38864697

RESUMEN

Pheochromocytoma (PCC) and abdominal paraganglioma (aPGL) (together abbreviated PPGL) frequently present with an underlying genetic event in a PPGL driver gene, and additional susceptibility genes are anticipated. Here, we re-analyzed whole-exome sequencing data for PCC patients and identified two patients with rare missense variants in the calcium voltage-gated channel subunit 1H gene (CACNA1H). CACNA1H variants were also found in the clinical setting in PCC patients using targeted sequencing and from analysis of The Cancer Genome Atlas database. In total, CACNA1H variants were found in six PCC cases. Three of these were constitutional, and two are known to have functional consequences on hormone production and gene expression in primary aldosteronism and aldosterone-producing adrenocortical adenoma. In general, PPGL exhibited reduced CACNA1H mRNA expression as compared to normal adrenal. Immunohistochemistry showed strong CACNA1H (CaV3.2) staining in adrenal medulla while PPGL typically had weak or negative staining. Reduced CACNA1H gene expression was especially pronounced in PCC compared to aPGL and in PPGL with cluster 2 kinase signaling phenotype. Furthermore, CACNA1H levels correlated with HIF1A and HIF2A. Moreover, TCGA data revealed a correlation between CACNA1H methylation density and gene expression. Expression of rCacna1h in PC12 cells induced differential protein expression profiles, determined by mass spectrometry, as well as a shift in the membrane potential where maximum calcium currents were observed, as determined by electrophysiology. The findings suggest the involvement of CACNA1H/CaV3.2 in pheochromocytoma development and establish a potential link between the etiology of adrenomedullary and adrenocortical tumor development.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Regulación hacia Abajo , Feocromocitoma , Feocromocitoma/genética , Feocromocitoma/metabolismo , Humanos , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/metabolismo , Femenino , Masculino , Animales , Persona de Mediana Edad , Adulto , Ratas , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Células PC12
9.
Int J Oral Sci ; 16(1): 43, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802345

RESUMEN

Ferroptosis is implicated in the pathogenesis of numerous chronic-inflammatory diseases, yet its association with progressive periodontitis remains unexplored. To investigate the involvement and significance of ferroptosis in periodontitis progression, we assessed sixteen periodontitis-diagnosed patients. Disease progression was clinically monitored over twelve weeks via weekly clinical evaluations and gingival crevicular fluid (GCF) collection was performed for further analyses. Clinical metrics, proteomic data, in silico methods, and bioinformatics tools were combined to identify protein profiles linked to periodontitis progression and to explore their potential connection with ferroptosis. Subsequent western blot analyses validated key findings. Finally, a single-cell RNA sequencing (scRNA-seq) dataset (GSE164241) for gingival tissues was analyzed to elucidate cellular dynamics during periodontitis progression. Periodontitis progression was identified as occurring at a faster rate than traditionally thought. GCF samples from progressing and non-progressing periodontal sites showed quantitative and qualitatively distinct proteomic profiles. In addition, specific biological processes and molecular functions during progressive periodontitis were revealed and a set of hub proteins, including SNCA, CA1, HBB, SLC4A1, and ANK1 was strongly associated with the clinical progression status of periodontitis. Moreover, we found specific proteins - drivers or suppressors - associated with ferroptosis (SNCA, FTH1, HSPB1, CD44, and GCLC), revealing the co-occurrence of this specific type of regulated cell death during the clinical progression of periodontitis. Additionally, the integration of quantitative proteomic data with scRNA-seq analysis suggested the susceptibility of fibroblasts to ferroptosis. Our analyses reveal proteins and processes linked to ferroptosis for the first time in periodontal patients, which offer new insights into the molecular mechanisms of progressive periodontal disease. These findings may lead to novel diagnostic and therapeutic strategies.


Asunto(s)
Progresión de la Enfermedad , Ferroptosis , Líquido del Surco Gingival , Periodontitis , Humanos , Líquido del Surco Gingival/química , Periodontitis/metabolismo , Periodontitis/patología , Femenino , Masculino , Proteómica , Muerte Celular , Adulto , Persona de Mediana Edad , Western Blotting
10.
J Am Soc Mass Spectrom ; 35(5): 902-911, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38609335

RESUMEN

Traditionally, mass spectrometry (MS) output is the ion abundance plotted versus the ionic mass-to-charge ratio m/z. While employing only commercially available equipment, Charge Determination Analysis (CHARDA) adds a third dimension to MS, estimating for individual peaks their charge states z starting from z = 1 and color coding z in m/z spectra. CHARDA combines the analysis of ion signal decay rates in the time-domain data (transients) in Fourier transform (FT) MS with the interrogation of mass defects (fractional mass) of biopolymers. Being applied to individual isotopic peaks in a complex protein tandem (MS/MS) data set, CHARDA aids peptide mass spectra interpretation by facilitating charge-state deconvolution of large ionic species in crowded regions, estimating z even in the absence of an isotopic distribution (e.g., for monoisotopic mass spectra). CHARDA is fast, robust, and consistent with conventional FTMS and FTMS/MS data acquisition procedures. An effective charge-state resolution Rz ≥ 6 is obtained with the potential for further improvements.


Asunto(s)
Análisis de Fourier , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Biopolímeros/química , Biopolímeros/análisis , Iones/química , Color
11.
ACS Pharmacol Transl Sci ; 7(3): 787-796, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38481686

RESUMEN

Rapamycin is a natural antifungal, immunosuppressive, and antiproliferative compound that allosterically inhibits mTOR complex 1. The ubiquitin-proteasome system (UPS) responsible for protein turnover is usually not listed among the pathways affected by mTOR signaling. However, some previous studies have indicated the interplay between the UPS and mTOR. It has also been reported that rapamycin and its analogs can allosterically inhibit the proteasome itself. In this work, we studied the molecular effect of rapamycin and its analogs (rapalogs), everolimus and temsirolimus, on the A549 cell line by expression proteomics. The analysis of differentially expressed proteins showed that the cellular response to everolimus treatment is strikingly different from that to rapamycin and temsirolimus. In the cluster analysis, the effect of everolimus was similar to that of bortezomib, a well-established proteasome inhibitor. UPS-related pathways were enriched in the cluster of proteins specifically upregulated upon everolimus and bortezomib treatments, suggesting that both compounds have similar proteasome inhibition effects. In particular, the total amount of ubiquitin was significantly elevated in the samples treated with everolimus and bortezomib, and analysis of the polyubiquitination patterns revealed elevated intensities of the ubiquitin peptide with a GG modification at the K48 residue, consistent with a bottleneck in proteasomal protein degradation. Moreover, the everolimus treatment resulted in both ubiquitin phosphorylation and generation of a significant amount of semitryptic peptides, illustrating the increase in the protease activity. These observations suggest that everolimus affects the UPS in a unique way, and its mechanism of action is different from that of its close chemical analogs, rapamycin and temsirolimus.

12.
J Pharm Anal ; 14(1): 100-114, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38352946

RESUMEN

Endometriosis is a common chronic gynecological disease with endometrial cell implantation outside the uterus. Angiogenesis is a major pathophysiology in endometriosis. Our previous studies have demonstrated that the prodrug of epigallocatechin gallate (ProEGCG) exhibits superior anti-endometriotic and anti-angiogenic effects compared to epigallocatechin gallate (EGCG). However, their direct binding targets and underlying mechanisms for the differential effects remain unknown. In this study, we demonstrated that oral ProEGCG can be effective in preventing and treating endometriosis. Additionally, 1D and 2D Proteome Integral Solubility Alteration assay-based chemical proteomics identified metadherin (MTDH) and PX domain containing serine/threonine kinase-like (PXK) as novel binding targets of EGCG and ProEGCG, respectively. Computational simulation and BioLayer interferometry were used to confirm their binding affinity. Our results showed that MTDH-EGCG inhibited protein kinase B (Akt)-mediated angiogenesis, while PXK-ProEGCG inhibited epidermal growth factor (EGF)-mediated angiogenesis via the EGF/hypoxia-inducible factor (HIF-1a)/vascular endothelial growth factor (VEGF) pathway. In vitro and in vivo knockdown assays and microvascular network imaging further confirmed the involvement of these signaling pathways. Moreover, our study demonstrated that ProEGCG has superior therapeutic effects than EGCG by targeting distinct signal transduction pathways and may act as a novel antiangiogenic therapy for endometriosis.

13.
Angew Chem Int Ed Engl ; 63(3): e202316488, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38009610

RESUMEN

Inorganic materials depleted of heavy stable isotopes are known to deviate strongly in some physicochemical properties from their isotopically natural counterparts. Here we explored for the first time the effect of simultaneous depletion of the heavy carbon, hydrogen, oxygen and nitrogen isotopes on the bacterium E. coli and the enzymes expressed in it. Bacteria showed faster growth, with most proteins exhibiting higher thermal stability, while for recombinant enzymes expressed in depleted media, faster kinetics was discovered. At room temperature, luciferase, thioredoxin and dihydrofolate reductase and Pfu DNA polymerase showed up to a 250 % increase in activity compared to the native counterparts, with an additional ∼50 % increase at 10 °C. Diminished conformational and vibrational entropy is hypothesized to be the cause of the accelerated kinetics. Ultralight enzymes may find an application where extreme reaction rates are required.


Asunto(s)
Escherichia coli , Hidrógeno , Escherichia coli/metabolismo , Hidrógeno/metabolismo , Bacterias , Tetrahidrofolato Deshidrogenasa/genética , Cinética
15.
Molecules ; 28(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836614

RESUMEN

We investigated the immediate molecular consequences of traumatic brain injuries (TBIs) using a novel proteomics approach. We simulated TBIs using an innovative laboratory apparatus that employed a 5.1 kg dummy head that held neuronal cells and generated a ≤4000 g-force acceleration upon impact. A Proteome Integral Solubility Alteration (PISA) assay was then employed to monitor protein solubility changes in a system-wide manner. Dynamic impacts led to both a reduction in neuron viability and massive solubility changes in the proteome. The affected proteins mapped not only to the expected pathways, such as those of cell adhesion, collagen, and laminin structures, as well as the response to stress, but also to other dense protein networks, such as immune response, complement, and coagulation cascades. The cellular effects were found to be mainly due to the shockwave rather than the g-force acceleration. Soft materials could reduce the impact's severity only until they were fully compressed. This study shows a way of developing a proteome-based meter for measuring irreversible shockwave-induced cell damage and provides a resource for identifying protein biomarkers of TBIs and potential drug targets for the development of products aimed at primary prevention and intervention.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Proteoma , Humanos , Proteoma/metabolismo , Solubilidad , Neuronas/metabolismo , Proteómica
17.
Nat Commun ; 14(1): 6243, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813859

RESUMEN

G protein-coupled receptors are important drug targets that engage and activate signaling transducers in multiple cellular compartments. Delineating therapeutic signaling from signaling associated with adverse events is an important step towards rational drug design. The glucagon-like peptide-1 receptor (GLP-1R) is a validated target for the treatment of diabetes and obesity, but drugs that target this receptor are a frequent cause of adverse events. Using recently developed biosensors, we explored the ability of GLP-1R to activate 15 pathways in 4 cellular compartments and demonstrate that modifications aimed at improving the therapeutic potential of GLP-1R agonists greatly influence compound efficacy, potency, and safety in a pathway- and compartment-selective manner. These findings, together with comparative structure analysis, time-lapse microscopy, and phosphoproteomics, reveal unique signaling signatures for GLP-1R agonists at the level of receptor conformation, functional selectivity, and location bias, thus associating signaling neighborhoods with functionally distinct cellular outcomes and clinical consequences.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Receptor del Péptido 1 Similar al Glucagón , Incretinas , Humanos , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Incretinas/efectos adversos , Transducción de Señal
18.
Hepatology ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37870288

RESUMEN

BACKGROUND AND AIMS: The liver has a remarkable capacity to regenerate, which is sustained by the ability of hepatocytes to act as facultative stem cells that, while normally quiescent, re-enter the cell cycle after injury. Growth factor signaling is indispensable in rodents, whereas Wnt/ß-catenin is not required for effective tissue repair. However, the molecular networks that control human liver regeneration remain unclear. METHODS: Organotypic 3D spheroid cultures of primary human or murine hepatocytes were used to identify the signaling network underlying cell cycle re-entry. Furthermore, we performed chemogenomic screening of a library enriched for epigenetic regulators and modulators of immune function to determine the importance of epigenomic control for human hepatocyte regeneration. RESULTS: Our results showed that, unlike in rodents, activation of Wnt/ß-catenin signaling is the major mitogenic cue for adult primary human hepatocytes. Furthermore, we identified TGFß inhibition and inflammatory signaling through NF-κB as essential steps for the quiescent-to-regenerative switch that allows Wnt/ß-catenin-induced proliferation of human cells. In contrast, growth factors, but not Wnt/ß-catenin signaling, triggered hyperplasia in murine hepatocytes. High-throughput screening in a human model confirmed the relevance of NFκB and revealed the critical roles of polycomb repressive complex 2, as well as of the bromodomain families I, II, and IV. CONCLUSIONS: This study revealed a network of NFκB, TGFß, and Wnt/ß-catenin that controls human hepatocyte regeneration in the absence of exogenous growth factors, identified novel regulators of hepatocyte proliferation, and highlighted the potential of organotypic culture systems for chemogenomic interrogation of complex physiological processes.

19.
Molecules ; 28(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37894596

RESUMEN

Peptides released on frogs' skin in a stress situation represent their only weapon against micro-organisms and predators. Every species and even population of frog possesses its own peptidome being appropriate for their habitat. Skin peptides are considered potential pharmaceuticals, while the whole peptidome may be treated as a taxonomic characteristic of each particular population. Continuing the studies on frog peptides, here we report the peptidome composition of the Central Slovenian agile frog Rana dalmatina population. The detection and top-down de novo sequencing of the corresponding peptides was conducted exclusively by tandem mass spectrometry without using any chemical derivatization procedures. Collision-induced dissociation (CID), higher energy collision-induced dissociation (HCD), electron transfer dissociation (ETD) and combined MS3 method EThcD with stepwise increase of HCD energy were used for that purpose. MS/MS revealed the whole sequence of the detected peptides including differentiation between isomeric Leu/Ile, and the sequence portion hidden in the disulfide cycle. The array of the discovered peptide families (brevinins 1 and 2, melittin-related peptides (MRPs), temporins and bradykinin-related peptides (BRPs)) is quite similar to that of R. temporaria. Since the genome of this frog remains unknown, the obtained results were compared with the recently published transcriptome of R. dalmatina.


Asunto(s)
Ranidae , Espectrometría de Masas en Tándem , Humanos , Animales , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Anuros , Análisis de Secuencia de Proteína/métodos , Piel/química
20.
Nat Commun ; 14(1): 5949, 2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741824

RESUMEN

Rheumatoid arthritis (RA) involves several classes of pathogenic autoantibodies, some of which react with type-II collagen (COL2) in articular cartilage. We previously described a subset of COL2 antibodies targeting the F4 epitope (ERGLKGHRGFT) that could be regulatory. Here, using phage display, we developed recombinant antibodies against this epitope and examined the underlying mechanism of action. One of these antibodies, R69-4, protected against cartilage antibody- and collagen-induced arthritis in mice, but not autoimmune disease models independent of arthritogenic autoantibodies. R69-4 was further shown to cross-react with a large range of proteins within the inflamed synovial fluid, such as the complement protein C1q. Complexed R69-4 inhibited neutrophil FCGR3 signaling, thereby impairing downstream IL-1ß secretion and neutrophil self-orchestrated recruitment. Likewise, human isotypes of R69-4 protected against arthritis with comparable efficiency. We conclude that R69-4 abrogates autoantibody-mediated arthritis mainly by hindering FCGR3 signaling, highlighting its potential clinical utility in acute RA.


Asunto(s)
Artritis Experimental , Humanos , Animales , Ratones , Artritis Experimental/prevención & control , Neutrófilos , Colágeno , Autoanticuerpos , Epítopos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...