Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Invest Ophthalmol Vis Sci ; 64(5): 1, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126314

RESUMEN

Purpose: Familial exudative vitreoretinopathy (FEVR) and Norrie disease are examples of genetic disorders in which the retinal vasculature fails to fully form (hypovascular), leading to congenital blindness. While studying the role of a factor expressed during retinal development, T-box factor Tbx3, we discovered that optic cup loss of Tbx3 caused the retina to become hypovascular. The purpose of this study was to characterize how loss of Tbx3 affects retinal vasculature formation. Methods: Conditional removal of Tbx3 from both retinal progenitors and astrocytes was done using the optic cup-Cre recombinase driver BAC-Dkk3-Cre and was analyzed using standard immunohistochemical techniques. Results: With Tbx3 loss, the retinas were hypovascular, as seen in patients with retinopathy of prematurity (ROP) and FEVR. Retinal vasculature failed to form the stereotypic tri-layered plexus in the dorsal-temporal region. Astrocyte precursors were reduced in number and failed to form a lattice at the dorsal-temporal edge. We next examined retinal ganglion cells, as they have been shown to play a critical role in retinal angiogenesis. We found that melanopsin expression and Islet1/2-positive retinal ganglion cells were reduced in the dorsal half of the retina. In previous studies, the loss of melanopsin has been linked to hyaloid vessel persistence, which we also observed in the Tbx3 conditional knockout (cKO) retinas, as well as in infants with ROP or FEVR. Conclusions: To the best of our knowledge, these studies are the first demonstration that Tbx3 is required for normal mammalian eye formation. Together, the results provide a potential genetic model for retinal hypovascular diseases.


Asunto(s)
Degeneración Retiniana , Retinopatía de la Prematuridad , Ratones , Animales , Recién Nacido , Humanos , Retina , Células Ganglionares de la Retina , Vasos Retinianos , Vitreorretinopatías Exudativas Familiares , Mamíferos , Proteínas de Dominio T Box
2.
Cold Spring Harb Protoc ; 2018(12)2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-29789402

RESUMEN

Genetically controlled cell type-specific ablation provides a reproducible method to induce regeneration that can be temporally and spatially controlled. Until recently, regeneration studies in Xenopus have relied on surgical methods to stimulate regeneration. These methods are labor intensive and not as reproducible as a genetically controlled approach. In this protocol we describe selective ablation of rod photoreceptors in the premetamorphic Xenopus laevis retina using the nitroreductase/metronidazole (NTR/Mtz) system. We use the XOPNTR transgenic line in which the Xenopus Rhodopsin promoter drives rod photoreceptor-specific expression of the bacterial enzyme, NTR. Exposure of transgenic tadpoles to Mtz for 2 d completely ablates rods by 7 d after initial Mtz exposure. Removal of Mtz allows rods to regenerate and makes rod-specific ablation reversible and amenable for regeneration studies. The protocol presented here is applicable to the selective ablation of any cell type with the use of appropriate cell type-specific promoters.


Asunto(s)
Técnicas de Ablación/métodos , Metronidazol/metabolismo , Nitrorreductasas/metabolismo , Proteínas Recombinantes/metabolismo , Regeneración , Células Fotorreceptoras Retinianas Bastones/fisiología , Experimentación Animal , Animales , Animales Modificados Genéticamente , Metronidazol/administración & dosificación , Nitrorreductasas/genética , Proteínas Recombinantes/genética , Xenopus laevis
3.
Dev Biol ; 426(2): 418-428, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28438336

RESUMEN

The eye field transcription factor, Six6, is essential for both the early (specification and proliferative growth) phase of eye formation, as well as for normal retinal progenitor cell differentiation. While genomic regions driving six6 optic cup expression have been described, the sequences controlling eye field and optic vesicle expression are unknown. Two evolutionary conserved regions 5' and a third 3' to the six6 coding region were identified, and together they faithfully replicate the endogenous X. laevis six6 expression pattern. Transgenic lines were generated and used to determine the onset and expression patterns controlled by the regulatory regions. The conserved 3' region was necessary and sufficient for eye field and optic vesicle expression. In contrast, the two conserved enhancer regions located 5' of the coding sequence were required together for normal optic cup and mature retinal expression. Gain-of-function experiments indicate endogenous six6 and GFP expression in F1 transgenic embryos are similarly regulated in response to candidate trans-acting factors. Importantly, CRISPR/CAS9-mediated deletion of the 3' eye field/optic vesicle enhancer in X. laevis, resulted in a reduction in optic vesicle size. These results identify the cis-acting regions, demonstrate the modular nature of the elements controlling early versus late retinal expression, and identify potential regulators of six6 expression during the early stages of eye formation.


Asunto(s)
Ojo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Secuencias Reguladoras de Ácidos Nucleicos , Xenopus laevis/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Sitios de Unión , Sistemas CRISPR-Cas , Secuencia Conservada , Femenino , Genes Reporteros , Larva , Masculino , ARN Guía de Kinetoplastida/genética , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Transgenes , Proteínas de Xenopus/genética , Proteínas de Xenopus/fisiología , Xenopus laevis/crecimiento & desarrollo
4.
Dev Neurobiol ; 77(8): 1007-1020, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28188691

RESUMEN

A correctly functioning spinal cord is crucial for locomotion and communication between body and brain but there are fundamental gaps in our knowledge of how spinal neuronal circuitry is established and functions. To understand the genetic program that regulates specification and functions of this circuitry, we need to connect neuronal molecular phenotypes with physiological analyses. Studies using Xenopus laevis tadpoles have increased our understanding of spinal cord neuronal physiology and function, particularly in locomotor circuitry. However, the X. laevis tetraploid genome and long generation time make it difficult to investigate how neurons are specified. The opacity of X. laevis embryos also makes it hard to connect functional classes of neurons and the genes that they express. We demonstrate here that Tol2 transgenic constructs using zebrafish enhancers that drive expression in specific zebrafish spinal neurons label equivalent neurons in X. laevis and that the incorporation of a Gal4:UAS amplification cassette enables cells to be observed in live X. laevis tadpoles. This technique should enable the molecular phenotypes, morphologies and physiologies of distinct X. laevis spinal neurons to be examined together in vivo. We have used an islet1 enhancer to label Rohon-Beard sensory neurons and evx enhancers to identify V0v neurons, for the first time, in X. laevis spinal cord. Our work demonstrates the homology of spinal cord circuitry in zebrafish and X. laevis, suggesting that future work could combine their relative strengths to elucidate a more complete picture of how vertebrate spinal cord neurons are specified, and function to generate behavior. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1007-1020, 2017.


Asunto(s)
Proteínas de Homeodominio/genética , Neuronas/citología , Médula Espinal/citología , Xenopus laevis/anatomía & histología , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Larva , Microscopía Confocal , Microscopía Fluorescente , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , ARN Mensajero/administración & dosificación , ARN Mensajero/metabolismo , Médula Espinal/metabolismo , Xenopus laevis/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
5.
Dev Biol ; 426(2): 219-235, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-26996101

RESUMEN

Intermediate filament proteins are structural components of the cellular cytoskeleton with cell-type specific expression and function. Glial fibrillary acidic protein (GFAP) is a type III intermediate filament protein and is up-regulated in glia of the nervous system in response to injury and during neurodegenerative diseases. In the retina, GFAP levels are dramatically increased in Müller glia and are thought to play a role in the extensive structural changes resulting in Müller cell hypertrophy and glial scar formation. In spite of similar changes to the morphology of Xenopus Müller cells following injury, we found that Xenopus lack a gfap gene. Other type III intermediate filament proteins were, however, significantly induced following rod photoreceptor ablation and retinal ganglion cell axotomy. The recently available X. tropicalis and X. laevis genomes indicate a small deletion most likely resulted in the loss of the gfap gene during anuran evolution. Lastly, a survey of representative species from all three extant amphibian orders including the Anura (frogs, toads), Caudata (salamanders, newts), and Gymnophiona (caecilians) suggests that deletion of the gfap locus occurred in the ancestor of all Anura after its divergence from the Caudata ancestor around 290 million years ago. Our results demonstrate that extensive changes in Müller cell morphology following retinal injury do not require GFAP in Xenopus, and other type III intermediate filament proteins may be involved in the gliotic response.


Asunto(s)
Células Ependimogliales/patología , Gliosis/fisiopatología , Proteínas de Filamentos Intermediarios/fisiología , Retina/lesiones , Proteínas de Xenopus/fisiología , Xenopus laevis/fisiología , Animales , Animales Modificados Genéticamente , Anuros/genética , Axotomía , Evolución Biológica , Femenino , Eliminación de Gen , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/fisiología , Gliosis/patología , Humanos , Larva , Masculino , Metronidazol/toxicidad , Ratones , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Ganglionares de la Retina/patología , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/patología , Especificidad de la Especie , Sintenía , Urodelos/genética , Vimentina/fisiología , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo
6.
Development ; 143(19): 3560-3572, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27578778

RESUMEN

Vertebrate eye formation begins in the anterior neural plate in the eye field. Seven eye field transcription factors (EFTFs) are expressed in eye field cells and when expressed together are sufficient to generate retina from pluripotent cells. The EFTF Tbx3 can regulate the expression of some EFTFs; however, its role in retina formation is unknown. Here, we show that Tbx3 represses bmp4 transcription and is required in the eye field for both neural induction and normal eye formation in Xenopus laevis Although sufficient for neural induction, Tbx3-expressing pluripotent cells only form retina in the context of the eye field. Unlike Tbx3, the neural inducer Noggin can generate retina both within and outside the eye field. We found that the neural and retina-inducing activity of Noggin requires Tbx3. Noggin, but not Tbx3, induces Pax6 and coexpression of Tbx3 and Pax6 is sufficient to determine pluripotent cells to a retinal lineage. Our results suggest that Tbx3 represses bmp4 expression and maintains eye field neural progenitors in a multipotent state; then, in combination with Pax6, Tbx3 causes eye field cells to form retina.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Factor de Transcripción PAX6/metabolismo , Retina/metabolismo , Proteínas de Dominio T Box/metabolismo , Proteínas de Xenopus/metabolismo , Regiones no Traducidas 5'/genética , Regiones no Traducidas 5'/fisiología , Animales , Proteína Morfogenética Ósea 4/genética , Hibridación in Situ , Factor de Transcripción PAX6/genética , Plásmidos/genética , Proteínas de Dominio T Box/genética , Proteínas de Xenopus/genética , Xenopus laevis
7.
J Ophthalmic Vis Res ; 9(1): 126-33, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24982746
8.
J Vis Exp ; (88)2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24962702

RESUMEN

Measurement of the visual function in the tadpoles of the frog, Xenopus laevis, allows screening for blindness in live animals. The optokinetic response is a vision-based, reflexive behavior that has been observed in all vertebrates tested. Tadpole eyes are small so the tail flip response was used as alternative measure, which requires a trained technician to record the subtle response. We developed an alternative behavior assay based on the fact that tadpoles prefer to swim on the white side of a tank when placed in a tank with both black and white sides. The assay presented here is an inexpensive, simple alternative that creates a response that is easily measured. The setup consists of a tripod, webcam and nested testing tanks, readily available in most Xenopus laboratories. This article includes a movie showing the behavior of tadpoles, before and after severing the optic nerve. In order to test the function of one eye, we also include representative results of a tadpole in which each eye underwent retinal axotomy on consecutive days. Future studies could develop an automated version of this assay for testing the vision of many tadpoles at once.


Asunto(s)
Conducta Animal/fisiología , Percepción Visual/fisiología , Xenopus laevis/fisiología , Animales , Nervio Óptico/fisiología , Nervio Óptico/cirugía , Visión Ocular/fisiología
9.
Dev Biol ; 384(1): 26-40, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24095902

RESUMEN

Proliferation and differentiation are tightly controlled during neural development. In the embryonic neural plate, primary neurogenesis is driven by the proneural pathway. Here we report the characterization of Maturin, a novel, evolutionarily conserved protein that is required for normal primary neurogenesis. Maturin is detected throughout the early nervous system, yet it is most strongly expressed in differentiating neurons of the embryonic fish, frog and mouse nervous systems. Maturin expression can be induced by the proneural transcription factors Neurog2, Neurod1, and Ebf3. Maturin overexpression promotes neurogenesis, while loss-of-function inhibits the differentiation of neuronal progenitors, resulting in neural plate expansion. Maturin knockdown blocks the ability of Neurog2, Neurod1, and Ebf3 to drive ectopic neurogenesis. Maturin and Pak3, are both required for, and can synergize to promote differentiation of the primary neurons in vivo. Together, our results suggest that Maturin functions during primary neurogenesis and is required for the proneural pathway to regulate neural differentiation.


Asunto(s)
Diferenciación Celular , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Proteínas de Xenopus/genética , Proteínas de Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Embrión no Mamífero/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis , Pez Cebra , Proteínas de Pez Cebra/metabolismo
10.
Genesis ; 50(3): 325-32, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22337567

RESUMEN

Transgenesis is an essential, powerful tool for investigating gene function and the activities of enhancers, promoters, and transcription factors in the chromatin environment. In Xenopus, current methods generate germ-line transgenics by random insertion, often resulting in mosaicism, position-dependent variations in expression, and lab-to-lab differences in efficiency. We have developed and tested a Xenopus FLP-FRT recombinase-mediated transgenesis (X-FRMT) method. We demonstrate transgenesis of Xenopus laevis by FLP-catalyzed recombination of donor plasmid cassettes into F(1) tadpoles with host cassette transgenes. X-FRMT provides a new method for generating transgenic Xenopus. Once Xenopus lines harboring single host cassettes are generated, X-FRMT should allow for the targeting of transgenes to well-characterized integration site(s), requiring no more special reagents or training than that already common to most Xenopus labs.


Asunto(s)
Marcación de Gen/métodos , Técnicas de Transferencia de Gen , Xenopus laevis/genética , Animales , Animales Modificados Genéticamente , Secuencia de Bases , ADN Nucleotidiltransferasas/metabolismo , Femenino , Orden Génico , Genes Reporteros , Vectores Genéticos/genética , Masculino , Recombinación Genética , Transgenes
11.
Invest Ophthalmol Vis Sci ; 52(1): 364-73, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20720220

RESUMEN

PURPOSE: Amphibian retinas regenerate after injury, making them ideal for studying the mechanisms of retinal regeneration, but this leaves their value as models of retinal degeneration in question. The authors asked whether the initial cellular changes after rod loss in the regenerative model Xenopus laevis mimic those observed in nonregenerative models. They also asked whether rod loss was reversible. METHODS: The authors generated transgenic X. laevis expressing the Escherichia coli enzyme nitroreductase (NTR) under the control of the rod-specific rhodopsin (XOP) promoter. NTR converts the antibiotic metronidazole (Mtz) into an interstrand DNA cross-linker. A visually mediated behavioral assay and immunohistochemistry were used to determine the effects of Mtz on the vision and retinas of XOPNTR F1 tadpoles. RESULTS: NTR expression was detected only in the rods of XOPNTR tadpoles. Mtz treatment resulted in rapid vision loss and near complete ablation of rod photoreceptors by day 12. Müller glial cell hypertrophy and progressive cone degeneration followed rod cell ablation. When animals were allowed to recover, new rods were born and formed outer segments. CONCLUSIONS: The initial secondary cellular changes detected in the rodless tadpole retina mimic those observed in other models of retinal degeneration. The rapid and synchronous rod loss in XOPNTR animals suggested this model may prove useful in the study of retinal degeneration. Moreover, the regenerative capacity of the Xenopus retina makes these animals a valuable tool for identifying the cellular and molecular mechanisms at work in lower vertebrates with the remarkable capacity of retinal regeneration.


Asunto(s)
Modelos Animales de Enfermedad , Células Fotorreceptoras Retinianas Conos/patología , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/patología , Animales , Animales Modificados Genéticamente , Apoptosis/efectos de los fármacos , Calbindinas , Recuento de Células , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Regulación Enzimológica de la Expresión Génica/fisiología , Genotipo , Hibridación Fluorescente in Situ , Etiquetado Corte-Fin in Situ , Masculino , Metronidazol/toxicidad , Microscopía Fluorescente , Neuroglía/patología , Nitrorreductasas/genética , Nitrorreductasas/metabolismo , Regeneración/fisiología , Células Fotorreceptoras Retinianas Conos/enzimología , Células Fotorreceptoras Retinianas Bastones/efectos de los fármacos , Células Fotorreceptoras Retinianas Bastones/enzimología , Retinitis Pigmentosa/enzimología , Proteína G de Unión al Calcio S100/metabolismo , Trastornos de la Visión/inducido químicamente , Trastornos de la Visión/patología , Xenopus laevis
12.
Curr Top Dev Biol ; 93: 29-60, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20959162

RESUMEN

Vertebrate eyes begin as a small patch of cells at the most anterior end of the early brain called the eye field. If these cells are removed from an amphibian embryo, the eyes do not form. If the eye field is transplanted to another location on the embryo or cultured in a dish, it forms eyes. These simple cut and paste experiments were performed at the beginning of the last century and helped to define the embryonic origin of the vertebrate eye. The genes necessary for eye field specification and eventual eye formation, by contrast, have only recently been identified. These genes and the molecular mechanisms regulating the initial formation of the Xenopus laevis eye field are the subjects of this review.


Asunto(s)
Ojo/embriología , Xenopus laevis , Animales , Movimiento Celular , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Morfogénesis/fisiología , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/anatomía & histología , Xenopus laevis/embriología
13.
J Vis Exp ; (39)2010 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-20479704

RESUMEN

Many proteins play a dual role in embryonic development. Those that regulate cell fate determination in a specific tissue can also affect the development of a larger region of the embryo. This makes defining its role in a particular tissue difficult to analyze. For example, noggin overexpression in Xenopus laevis embryos causes the expansion of the entire anterior region, including the eye(1,2). From this result, it is not known if Noggin plays a direct role in eye determination or that by causing an expansion of neural tissue, Noggin indirectly affects eye formation. Having this complex phenotype makes studying its eye-specific role in cell fate determination difficult to analyze. We have developed an assay that overcomes this problem. Taking advantage of the pluripotent nature of the Xenopus laevis animal cap (3), we have developed an assay to test the ability of gene product(s), like noggin or the eye field transcription factors (EFTFs), to transform caps into particular tissue or cell types by transplanting this tissue onto the side of the embryo (4). While we have found either Noggin protein treatment or a collection of transcription factors can determine retinal cell fate in animal caps, this procedure could be used to identify gene product(s) involved in specifying other tissues as well.


Asunto(s)
Embrión no Mamífero/trasplante , Xenopus laevis/embriología , Animales , Femenino , Masculino , Microinyecciones/métodos , ARN/química
14.
PLoS Biol ; 7(8): e1000174, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19688031

RESUMEN

Pluripotent cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells are the starting point from which to generate organ specific cell types. For example, converting pluripotent cells to retinal cells could provide an opportunity to treat retinal injuries and degenerations. In this study, we used an in vivo strategy to determine if functional retinas could be generated from a defined population of pluripotent Xenopus laevis cells. Animal pole cells isolated from blastula stage embryos are pluripotent. Untreated, these cells formed only epidermis, when transplanted to either the flank or eye field. In contrast, misexpression of seven transcription factors induced the formation of retinal cell types. Induced retinal cells were committed to a retinal lineage as they formed eyes when transplanted to the flanks of developing embryos. When the endogenous eye field was replaced with induced retinal cells, they formed eyes that were molecularly, anatomically, and electrophysiologically similar to normal eyes. Importantly, induced eyes could guide a vision-based behavior. These results suggest the fate of pluripotent cells may be purposely altered to generate multipotent retinal progenitor cells, which differentiate into functional retinal cell classes and form a neural circuitry sufficient for vision.


Asunto(s)
Diferenciación Celular , Regulación de la Expresión Génica , Células Madre Pluripotentes/citología , Retina/citología , Factores de Transcripción/metabolismo , Animales , Técnicas de Cultivo de Célula , Ojo/anatomía & histología , Ojo/citología , Ojo/crecimiento & desarrollo , Humanos , Neuronas/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/trasplante , Medicina Regenerativa , Retina/crecimiento & desarrollo , Trasplante de Células Madre , Factores de Transcripción/genética , Xenopus laevis/embriología
15.
Dev Dyn ; 235(4): 1133-41, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16470628

RESUMEN

Members of the LIM homeodomain (LIM-HD) family of proteins are double zinc-finger containing transcription factors with important functions in pattern formation and cell lineage determination. The LIM-HD family member Lhx2 is required for normal eye, liver, and central nervous system formation. Lhx2(-/-) mice lack eyes, and experiments in Xenopus predict that Lhx2 forms a regulatory network with other eye field transcription factors to specify the eye field during eye formation. Here, we describe the structure and developmental expression pattern of the Xenopus laevis homologue, XLhx2. We show that XLhx2 shares significant amino acid sequence identity with other vertebrate Lhx2 proteins and Drosophila apterous (ap). The expression patterns of XLhx2 in the early neural plate and during eye development are consistent with a role in eye field specification and retinal differentiation. Despite highly similar expression patterns in the mouse and Xenopus central nervous system, divergent expression patterns were also observed. Phylogenetic analysis confirmed the identity of the isolated cDNA as a Xenopus ortholog of Lhx2. Therefore, in spite of structural similarities, the mouse and Xenopus Lhx2 expression patterns differ, suggesting potential functional differences in these species.


Asunto(s)
Ojo/embriología , Regulación del Desarrollo de la Expresión Génica , Vertebrados/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Secuencia de Aminoácidos , Animales , Clonación Molecular , Secuencia Conservada , ADN/genética , ADN/aislamiento & purificación , Ojo/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Proteínas con Homeodominio LIM , Datos de Secuencia Molecular , Señales de Localización Nuclear , Filogenia , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vertebrados/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/aislamiento & purificación , Xenopus laevis/genética , Xenopus laevis/metabolismo
16.
Development ; 130(21): 5155-67, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12944429

RESUMEN

Several eye-field transcription factors (EFTFs) are expressed in the anterior region of the vertebrate neural plate and are essential for eye formation. The Xenopus EFTFs ET, Rx1, Pax6, Six3, Lhx2, tll and Optx2 are expressed in a dynamic, overlapping pattern in the presumptive eye field. Expression of an EFTF cocktail with Otx2 is sufficient to induce ectopic eyes outside the nervous system at high frequency. Using both cocktail subsets and functional (inductive) analysis of individual EFTFs, we have revealed a genetic network regulating vertebrate eye field specification. Our results support a model of progressive tissue specification in which neural induction then Otx2-driven neural patterning primes the anterior neural plate for eye field formation. Next, the EFTFs form a self-regulating feedback network that specifies the vertebrate eye field. We find striking similarities and differences to the network of homologous Drosophila genes that specify the eye imaginal disc, a finding that is consistent with the idea of a partial evolutionary conservation of eye formation.


Asunto(s)
Proteínas del Ojo/metabolismo , Ojo/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Morfogénesis , Factores de Transcripción/metabolismo , Animales , Tipificación del Cuerpo , Proteínas Portadoras , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Ojo/metabolismo , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Humanos , Hibridación in Situ , Proteínas con Homeodominio LIM , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción Otx , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box , Proteínas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/anatomía & histología , Xenopus laevis/embriología , Xenopus laevis/genética , Xenopus laevis/metabolismo , Proteína Homeobox SIX3
17.
Development ; 130(7): 1281-94, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12588845

RESUMEN

Photoreceptor and bipolar cells are molecularly related cell types in the vertebrate retina. XOtx5b is expressed in both photoreceptors and bipolars, while a closely related member of the same family of transcription factors, XOtx2, is expressed in bipolar cells only. Lipofection of retinal precursors with XOtx5b biases them toward photoreceptor fates whereas a similar experiment with XOtx2 promotes bipolar cell fates. Domain swap experiments show that the ability to specify different cell fates is largely contained in the divergent sequence C-terminal to the homeodomain, while the more homologous N-terminal and homeodomain regions of both genes, when fused to VP16 activators, promote only photoreceptor fates. XOtx5b is closely related to Crx and like Crx it drives expression from an opsin reporter in vivo. XOtx2 suppresses this XOtx5b-driven reporter activity providing a possible explanation for why bipolars do not express opsin. Similarly, co-lipofection of XOtx2 with XOtx5b overrides the latter's ability to promote photoreceptor fates and the combination drives bipolar fates. The results suggest that the shared and divergent parts of these homologous genes may be involved in specifying the shared and distinct characters of related cell types in the vertebrate retina.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Fotorreceptoras/embriología , Retina/embriología , Transactivadores/metabolismo , Factores de Transcripción , Animales , Genes Reporteros , Proteínas de Homeodominio/genética , Proteínas del Tejido Nervioso/genética , Factores de Transcripción Otx , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Opsinas de Bastones/genética , Transactivadores/genética , Xenopus , Proteínas de Xenopus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...