RESUMEN
We study the generation of narrowband terahertz (THz) pulses by stimulated Raman scattering and molecular modulation in hydrogen-filled hybrid hollow-core fibers. Using a judicious combination of materials and transverse structures, this waveguide design enables simultaneous confinement of optical and THz signals with reasonably low attenuation, as well as high nonlinear overlap. The THz pulses are then generated as the second Stokes band of a ns-long near-infrared pump pulse, aided by Raman coherence waves excited in the gaseous core by the beat-note created by the pump and its first Stokes band. Optimization of the fiber characteristics facilitates phase matching between the corresponding transitions and coherence waves while avoiding coherent gain suppression, resulting in potential optical-to-THz conversion efficiencies up to 60%, as confirmed by rigorous numerical modelling under ideal zero-loss conditions. When the current optical material constraints are considered, however, the attainable efficiencies relax to 0.2%, a still competitive value compared to other systems. The approach is in principle power and energy scalable, as well as tunable in the 1-10 THz range without any spectral gaps, thereby opening new pathways to the development of fiber-based THz sources complementary to other mature technologies such as quantum cascade lasers.
RESUMEN
The exhaustive control required for the correct wine production needs of many chemical analysis throughout the process. The most extended investigations for wine production control are focused on the quantification of total and free SO2. Most methods described in the literature have an adequate detection limit, but they usually lack reproducibility and require a previous sample treatment for the extraction of the SO2 from the wine-matrix. In this context, Surface-Enhanced Raman Spectroscopy (SERS) can be a promising technique for free SO2 determination without the need for any sample pre-processing. This work describes a proof of concept of a new methodology based on SERS and supported by Density Functional Theory (DFT) calculations to identify the active vibrational modes of the key molecules that contribute to the concentration of free SO2 in solution. Theoretical predictions and experimental outcomes are brought together to chemometrics to get a simple and real-time free SO2 monitoring. This general procedure could pave the way towards an implementation of a portable SERS detection module for in-field measurements.
Asunto(s)
Espectrometría Raman , Vino , Espectrometría Raman/métodos , Sulfitos/análisis , Estudios de Factibilidad , Reproducibilidad de los Resultados , Vino/análisisRESUMEN
Graphene, a two-dimensional hexagonal honeycomb carbon structure, is widely used in membrane technologies thanks to its unique optical, electrical, mechanical, thermal, chemical and photoelectric properties. The light weight, mechanical strength, anti-bacterial effect, and pollution-adsorption properties of graphene membranes are valuable in water treatment studies. Incorporation of nanoparticles like carbon nanotubes (CNTs) and metal oxide into the graphene filtering nanocomposite membrane structure can provide an improved photocatalysis process in a water treatment system. With the rapid development of graphene nanocomposites and graphene nanocomposite membrane-based acoustically supported filtering systems, including CNTs and visible-light active metal oxide photocatalyst, it is necessary to develop the researches of sustainable and environmentally friendly applications that can lead to new and groundbreaking water treatment systems. In this review, characteristic properties of graphene and graphene nanocomposites are examined, various methods for the synthesis and dispersion processes of graphene, CNTs, metal oxide and polymer nanocomposites and membrane fabrication and characterization techniques are discussed in details with using literature reports and our laboratory experimental results. Recent membrane developments in water treatment applications and graphene-based membranes are reviewed, and the current challenges and future prospects of membrane technology are discussed.
RESUMEN
In this work, we report on a twin-core fiber sensor system that provides improved spectral efficiency, allows for multiplexing and gives low level of crosstalk. Pieces of the referred strongly coupled multicore fiber are used as sensors in a laser cavity incorporating a pulsed semiconductor optical amplifier (SOA). Each sensor has its unique cavity length and can be addressed individually by electrically matching the periodic gating of the SOA to the sensor's cavity roundtrip time. The interrogator acts as a laser and provides a narrow spectrum with high signal-to-noise ratio. Furthermore, it allows distinguishing the response of individual sensors even in the case of overlapping spectra. Potentially, the number of interrogated sensors can be increased significantly, which is an appealing feature for multipoint sensing.
RESUMEN
Optical fiber-based Localized Surface Plasmon Resonance (OF-LSPR) biosensors have emerged as an ultra-sensitive miniaturized tool for a great variety of applications. Their fabrication by the chemical immobilization of gold nanoparticles (AuNPs) on the optic fiber end face is a simple and versatile method. However, it can render poor reproducibility given the number of parameters that influence the binding of the AuNPs. In order to develop a method to obtain OF-LSPR sensors with high reproducibility, we studied the effect that factors such as temperature, AuNPs concentration, fiber core size and time of immersion had on the number and aggregation of AuNPs on the surface of the fibers and their resonance signal. Our method consisted in controlling the deposition of a determined AuNPs density on the tip of the fiber by measuring its LSPR signal (or plasmonic signal, Sp) in real-time. Sensors created thus were used to measure changes in the refractive index of their surroundings and the results showed that, as the number of AuNPs on the probes increased, the changes in the Sp maximum values were ever lower but the wavelength shifts were higher. These results highlighted the relevance of controlling the relationship between the sensor composition and its performance.
Asunto(s)
Nanopartículas del Metal , Resonancia por Plasmón de Superficie , Oro/química , Nanopartículas del Metal/química , Fibras Ópticas , Reproducibilidad de los Resultados , Resonancia por Plasmón de Superficie/métodosRESUMEN
Sensors based on Bragg gratings inscribed in conventional single mode fibers are expensive due to the need of a sophisticated, but low-speed, interrogation system. As an alternative to overcome this issue, in this work, it is proposed and demonstrated the use of coupled-core optical fiber Bragg gratings. It was found that the relative reflectivity from such gratings changed when the coupled-core fiber was subjected to point or periodic bending. This feature makes the interrogation of such gratings simple, fast, and cost-effective. The reflectivity changes of the gratings are attributed to the properties of the supermodes supported by the coupled-core fiber. As potential applications of the referred gratings, intensity-modulated vector bending and vibration sensing are demonstrated. We believe that the results reported here can pave the way to the development of many inexpensive sensors. Besides, coupled-core fiber Bragg gratings may expand the use of grating technology in other areas.
RESUMEN
In this paper we report on the theoretical analysis and fabrication of a dual-core microstructured polymer optical fiber (mPOF) and demonstrate how the coupling characteristics of a dual-core mPOF may be a key factor to assess the quality of the fabrication process. The coupling characteristics of this fiber have been tested and, for comparison purposes, simulations regarding the effects of inaccuracies during the manufacturing process were carried out to evaluate the fabrication quality. Results indicate that theoretical, simulation and experimental data are in good agreement, which highlights the uniformity of the microstructure along the fiber and the quality of its fabrication process. In fact, the manufactured mPOF reached a coupling efficiency up to 95.26%, which makes this mPOF appealing for applications in which highly efficient power couplers are required.
RESUMEN
Bare and gold-coated tilted fiber Bragg gratings (TFBGs) can nowadays be considered as a mature technology for volume and surface refractometric sensing, respectively. As for other technologies, a continuous effort is made towards the production of even more sensitive sensors, thereby enabling a high-resolution screening of the surroundings and the possible detection of rare events. To this aim, we study in this work the development of TFBG refractometers in 4-core fibers. In particular, we show that the refractometric sensitivity of the cut-off mode can reach 100 nm/RIU for a bare grating. Using another demodulation method, a tenfold sensitivity increase is obtained when tracking the extremum of the SPR (surface plasmon resonance) envelope for a gold-coated TFBG configuration. Immobilization of DNA probes was performed as a proof-of-concept to assess the high surface sensitivity of the device.
RESUMEN
We report on recent advances in the use of inexpensive polymer optical fibres (POFs) for sensing applications in avionics. The sensors analysed in this manuscript take advantage of the unique properties of polymers, such as high flexibility, elasticity, and sensitivity, and they range from strain, elongation, and vibration interrogators to level and temperature meters, leading to cost-effective techniques for structural health monitoring in aircraft structures. We also highlight recent power-supply methods using Power-over-POF in order to feed sensors remotely, and we discuss the constraints imposed by connectors on the performance of POF networks in aircrafts.
RESUMEN
In this paper, useful models that enable time-efficient computational analyses of the performance of luminescent solar concentrators (LSCs) are developed and thoroughly described. These LSCs are based on polymer optical fibers codoped with organic dyes and/or europium chelates. The interest in such dopants lies in the availability of new dyes with higher quantum yields and in the photostability and suitable absorption and emission bands of europium chelates. Time-efficiency without compromising accuracy is especially important for the simulation of europium chelates, in which non-radiative energy transfers from the absorbing ligands to the europium ion and vice versa are so fast that the discretization in time, in the absence of some simplifying assumptions, would have to be very fine. Some available experimental results are also included for the sake of comparison.
RESUMEN
A new approach of Fiber Enhanced Raman Spectroscopy (FERS) is described within this article based on the use of Hydrogel-Core microstructured Polymer Optical Fibers (HyC-mPOF). The incorporation of the hydrogel only on the core of the Hollow-Core microstructured Polymer Optical Fiber (HC-mPOF) enables to perform FERS measurements in a functionalized matrix, enabling high selectivity Raman measurements. The hydrogel formation was continuously monitored and quantified using a Principal Component Analysis verifying the coherence between the components and the Raman spectrum of the hydrogel. The performed measurements with high and low affinity target molecules prove the feasibility of the presented HyC-mPOF platform.
RESUMEN
We propose and demonstrate a compact and simple vector bending sensor capable of distinguishing any direction and amplitude with high accuracy. The sensor consists of a short segment of asymmetric multicore fiber (MCF) fusion spliced to a standard single mode fiber. The reflection spectrum of such a structure shifts and shrinks in specific manners depending on the direction in which the MCF is bent. By monitoring simultaneously wavelength shift and light power variations, the amplitude and bend direction of the MCF can be unmistakably measured in any orientation, from 0° to 360°. The bending sensor proposed here is highly sensitive even for small bending angles (below 1°).
RESUMEN
In this work, we detail two types of fabrication processes of four polymer optical fibers doped with lumogen dyes. The fiber preforms have been manufactured with two different methods: extrusion and casting. We have compared the performance of the two types of fibers as luminescent solar concentrators by calculating their optical efficiencies and concentration factors. The obtained results show better performance for those fibers manufactured by the casting process. We have also studied the photostability of the two types of fibers doped with the dye lumogen red under solar light radiation. A high thermal stability of the doped fibers has been observed.
RESUMEN
We report on a compact, highly sensitive all-fiber accelerometer suitable for low frequency and low amplitude vibration sensing. The sensing elements in the device are two short segments of strongly coupled asymmetric multicore fiber (MCF) fusion spliced at 180° with respect to each other. Such segments of MCF are sandwiched between standard single mode fibers. The reflection spectrum of the device exhibits a narrow spectrum whose height and position in wavelength changes when it is subjected to vibrations. The interrogation of the accelerometer was carried out by a spectrometer and a photodetector to measure simultaneously wavelength shift and light power variations. The device was subjected to a wide range of vibration frequencies, from 1 mHz to 30 Hz, and accelerations from 0.76 mg to 29.64 mg, and performed linearly, with a sensitivity of 2.213 nW/mg. Therefore, we believe the accelerometer reported here may represent an alternative to existing electronic and optical accelerometers, especially for low frequency and amplitude vibrations, thanks to its compactness, simplicity, cost-effectiveness, implementation easiness and high sensitivity.
RESUMEN
Fibre optic technology is rapidly evolving, driven mainly by telecommunication and sensing applications. Excellent reliability of the manufacturing processes and low cost have drawn ever increasing attention to fibre-based sensors, e.g. for studying mechanical response/limitations of aerospace composite structures. Here, a vector bending and orientation distinguishing curvature sensor, based on asymmetric coupled multi-core fibre, is proposed and experimentally demonstrated. By optimising the mode coupling effect of a seven core multi-core fibre, we have achieved a sensitivity of - 1.4 nm/° as a vector bending sensor and - 17.5 nm/m-1 as a curvature sensor. These are the highest sensitivities reported so far, to the best of our knowledge. In addition, our sensor offers several advantages such as repeatability of fabrication, wide operating range and small size and weight which benefit its sensing applications.
RESUMEN
This work reports a novel method to create a 3D map of the refractive index of different graded-index polymer optical fibers (GI-POF), measuring the Raman spectra at different points of their transverse sections. Raman fingerprints provide accurate molecular information of the sample with high spatial resolution. The refractive index of GI-POFs is modified by adding a dopant in the preform; therefore, by recording the intensities of the Raman peaks related to the dopant material, a 3D map of the refractive index is rendered. In order to demonstrate the usefulness of the method, three different GI-POFs were characterized and the obtained results were compared with the information provided by the manufacturers. The results show accurate 3D maps of the refractive index taken in the actual GI-POF end faces, showing different imperfections that manufacturers do not take into account, such as the slight deviations of the azimuthal symmetry. The simplicity and the feasibility of the technique mean this method has high potential for fiber characterization purposes.
RESUMEN
The facet of optical fibers coated with nanostructures enables the development of ultraminiature and sensitive (bio)chemical sensors. The sensors reported until now lack specificity, and the fabrication methods offer poor reproducibility. Here, we demonstrate that by transforming the facet of conventional multimode optical fibers onto plasmon resonance energy transfer antenna surfaces, the specificity issues may be overcome. To do so, a low-cost chemical approach was developed to immobilize gold nanoparticles on the optical fiber facet in a reproducible and controlled manner. Our nanosensors are highly selective as plasmon resonance energy transfer is a nanospectroscopic effect that only occurs when the resonance wavelength of the nanoparticles matches that of the target parameter. As an example, we demonstrate the selective detection of picomolar concentrations of copper ions in water. Our sensor is 1000 times more sensitive than the state-of-the-art technologies. An additional advantage of our nanosensors is their simple interrogation; it comprises of a low-power light-emitting diode, a multimode optical fiber coupler, and a miniature spectrometer. We believe that the plasmon resonance energy transfer-based fiber-optic platform reported here may pave the way for the development of a new generation of ultraminiature, portable, and hypersensitive and selective (bio)chemical sensors.
Asunto(s)
Nanopartículas del Metal , Fibras Ópticas , Transferencia de Energía , Oro , Reproducibilidad de los Resultados , Resonancia por Plasmón de SuperficieRESUMEN
The performance of a precisely controlled drilling technique is critical in the fabrication process of microstructured polymer optical fibres. For the creation of a holey preform, adequate drilling bits with large length-to-diameter ratios provide the ability of machining preforms with complex structures and large lengths in a relatively short time. In this work, we analysed different drilling bits and techniques that can be employed for the creation of such preforms, and key parameters characterising the quality of the drilled holes, such as surface rugosity, diameter deviation, coaxiality and cylindricity were measured. For this purpose, based on theoretical simulations, four rings of air holes arranged in a hexagonal pattern were drilled in the preforms with different drill bits, and the experimental results for the above mentioned parameters have been presented. Additionally, optical power distribution of the fabricated microstructured polymer optical fibres was theoretically calculated and experimentally measured.
RESUMEN
This work reports on a diameter dependence analysis of the performance as luminescent solar concentrators of three self-fabricated polymer optical fibers (POFs) doped with a hybrid combination of dopants. The works carried out include the design and self-fabrication of the different diameter fibers; an experimental analysis of the output power, of the output irradiance and of the fluorescent fiber solar concentrator efficiency; a comparison of the experimental results with a theoretical model; a study of the performance of all the fibers under different simulated lighting conditions; and a calculation of the active fiber length of each of the samples, all of them as a function of the fiber core diameter. To the best of our knowledge, this paper reports the first analysis of the influence of the POF diameter for luminescent solar concentration applications. The results obtained offer a general perspective on the optimal design of solar energy concentrating systems based on doped POFs and pave the way for the implementation of cost-effective solar energy concentrating devices.