Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Virchows Arch ; 484(1): 47-59, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37882821

RESUMEN

Oral epithelial dysplasia (OED) is diagnosed and graded using a range of histological features, making grading subjective and challenging. Mitotic counting and phosphohistone-H3 (PHH3) staining have been used for the prognostication of various malignancies; however, their importance in OED remains unexplored. This study conducts a quantitative analysis of mitotic activity in OED using both haematoxylin and eosin (H&E)-stained slides and immunohistochemical (IHC) staining for PHH3. Specifically, the diagnostic and prognostic importance of mitotic number, mitotic type and intra-epithelial location is evaluated. Whole slide images (WSI) of OED (n = 60) and non-dysplastic tissue (n = 8) were prepared for analysis. Five-year follow-up data was collected. The total number of mitosis (TNOM), mitosis type and intra-epithelial location was manually evaluated on H&E images and a digital mitotic count performed on PHH3-stained WSI. Statistical associations between these features and OED grade, malignant transformation and OED recurrence were determined. Mitosis count increased with grade severity (H&E: p < 0.005; IHC: p < 0.05), and grade-based differences were seen for mitosis type and location (p < 0.05). The ratio of normal-to-abnormal mitoses was higher in OED (1.61) than control (1.25) and reduced with grade severity. TNOM, type and location were better predictors when combined with histological grading, with the most prognostic models demonstrating an AUROC of 0.81 for transformation and 0.78 for recurrence, exceeding conventional grading. Mitosis quantification and PHH3 staining can be an adjunct to conventional H&E assessment and grading for the prediction of OED prognosis. Validation on larger multicentre cohorts is needed to establish these findings.


Asunto(s)
Biomarcadores de Tumor , Histonas , Humanos , Histonas/análisis , Pronóstico , Índice Mitótico/métodos , Biomarcadores de Tumor/análisis , Clasificación del Tumor , Mitosis , Fosforilación
2.
Matrix Biol Plus ; 16: 100125, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36452176

RESUMEN

Tumour development and progression is dependent upon tumour cell interaction with the tissue stroma. Bioengineering the tumour-stroma microenvironment (TME) into 3D biomimetic models is crucial to gain insight into tumour cell development and progression pathways and identify therapeutic targets. Ameloblastoma is a benign but locally aggressive epithelial odontogenic neoplasm that mainly occurs in the jawbone and can cause significant morbidity and sometimes death. The molecular mechanisms for ameloblastoma progression are poorly understood. A spatial model recapitulating the tumour and stroma was engineered to show that without a relevant stromal population, tumour invasion is quantitatively decreased. Where a relevant stroma was engineered in dense collagen populated by gingival fibroblasts, enhanced receptor activator of nuclear factor kappa-B ligand (RANKL) expression was observed and histopathological properties, including ameloblastoma tumour islands, developed and were quantified. Using human osteoblasts (bone stroma) further enhanced the biomimicry of ameloblastoma histopathological phenotypes. This work demonstrates the importance of the two key stromal populations, osteoblasts, and gingival fibroblasts, for accurate 3D biomimetic ameloblastoma modelling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...