Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230012, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38583476

RESUMEN

The Atlantic meridional overturning circulation (AMOC) has caused significant climate changes over the past 90 000 years. Prior work has hypothesized that these millennial-scale climate variations effected past and contemporary biodiversity, but the effects are understudied. Moreover, few biogeographic models have accounted for uncertainties in palaeoclimatic simulations of millennial-scale variability. We examine whether refuges from millennial-scale climate oscillations have left detectable legacies in the patterns of contemporary species richness in eastern North America. We analyse 13 palaeoclimate estimates from climate simulations and proxy-based reconstructions as predictors for the contemporary richness of amphibians, passerine birds, mammals, reptiles and trees. Results suggest that past climate changes owing to AMOC variations have left weak but detectable imprints on the contemporary richness of mammals and trees. High temperature stability, precipitation increase, and an apparent climate fulcrum in the southeastern United States across millennial-scale climate oscillations aligns with high biodiversity in the region. These findings support the hypothesis that the southeastern United States may have acted as a biodiversity refuge. However, for some taxa, the strength and direction of palaeoclimate-richness relationships varies among different palaeoclimate estimates, pointing to the importance of palaeoclimatic ensembles and the need for caution when basing biogeographic interpretations on individual palaeoclimate simulations. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Asunto(s)
Biodiversidad , Mamíferos , Animales , Árboles , Anfibios , América del Norte , Cambio Climático
2.
Ecol Appl ; 34(2): e2934, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38071693

RESUMEN

Species distribution models are vital to management decisions that require understanding habitat use patterns, particularly for species of conservation concern. However, the production of distribution maps for individual species is often hampered by data scarcity, and existing species maps are rarely spatially validated due to limited occurrence data. Furthermore, community-level maps based on stacked species distribution models lack important community assemblage information (e.g., competitive exclusion) relevant to conservation. Thus, multispecies, guild, or community models are often used in conservation practice instead. To address these limitations, we aimed to generate fine-scale, spatially continuous, nationwide maps for species represented in the North American Breeding Bird Survey (BBS) between 1992 and 2019. We developed ensemble models for each species at three spatial resolutions-0.5, 2.5, and 5 km-across the conterminous United States. We also compared species richness patterns from stacked single-species models with those of 19 functional guilds developed using the same data to assess the similarity between predictions. We successfully modeled 192 bird species at 5-km resolution, 160 species at 2.5-km resolution, and 80 species at 0.5-km resolution. However, the species we could model represent only 28%-56% of species found in the conterminous US BBSs across resolutions owing to data limitations. We found that stacked maps and guild maps generally had high correlations across resolutions (median = 84%), but spatial agreement varied regionally by resolution and was most pronounced between the East and West at the 5-km resolution. The spatial differences between our stacked maps and guild maps illustrate the importance of spatial validation in conservation planning. Overall, our species maps are useful for single-species conservation and can support fine-scale decision-making across the United States and support community-level conservation when used in tandem with guild maps. However, there remain data scarcity issues for many species of conservation concern when using the BBS for single-species models.


Asunto(s)
Aves , Ecosistema , Animales , Estados Unidos
3.
Conserv Biol ; 38(1): e14143, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37424364

RESUMEN

Grassland birds in North America have declined sharply over the last 60 years, driven by the widespread loss and degradation of grassland habitats. Climate change is occurring more rapidly in grasslands relative to some other ecosystems, and exposure to extreme and novel climate conditions may affect grassland bird ecology and demographics. To determine the potential effects of weather and climate variability on grassland birds, we conducted a systematic review of relationships between temperature and precipitation and demographic responses in grassland bird species of North America. Based on 124 independent studies, we used a vote-counting approach to quantify the frequency and direction of significant effects of weather and climate variability on grassland birds. Grassland birds tended to experience positive and negative effects of higher temperatures and altered precipitation. Moderate, sustained increases in mean temperature and precipitation benefitted some species, but extreme heat, drought, and heavy rainfall often reduced abundance and nest success. These patterns varied among climate regions, temporal scales of temperature and precipitation (<1 or ≥1 month), and taxa. The sensitivity of grassland bird populations to extreme weather and altered climate variability will likely be mediated by regional climates, interaction with other stressors, life-history strategies of various species, and species' tolerances for novel climate conditions.


Sensibilidad de las aves norteamericanas de pastizales ante la variabilidad climática y el clima Resumen Las aves de los pastizales norteamericanos han declinado gravemente durante los últimos 60 años, principalmente debido a la pérdida generalizada y la degradación del hábitat. El cambio climático ocurre cada vez más rápido en los pastizales en relación con otros ecosistemas, y la exposición a las condiciones climáticas nuevas y extremas puede afectar la demografía y la ecología aviar en los pastizales. Realizamos un análisis sistemático de las relaciones entre la temperatura y la precipitación y las respuestas demográficas de las especies de aves de pastizales en Norteamérica para determinar los efectos potenciales del clima y la variabilidad climática sobre estas aves. Usamos un método de conteo de votos basado en 124 estudios independientes para cuantificar la frecuencia y dirección de los efectos significativos del clima y la variabilidad climática sobre las aves de pastizal. Las aves de pastizal tendieron a experimentar los efectos positivos y negativos de las altas temperaturas y la precipitación alterada. El incremento moderado y sostenido en las medias de temperatura y precipitación beneficiaron a algunas especies, pero el calor extremo, la sequía y las lluvias torrenciales redujeron con frecuencia la abundancia y el éxito de anidación. Estos patrones variaron entre las regiones climáticas, las escalas temporales de temperatura y precipitación (< 1 mes o ≥ 1 mes) y los taxones. La sensibilidad de las poblaciones de aves de pastizal ante el clima extremo y la variabilidad climática alterada probablemente será mediada por los climas regionales, la interacción con otros estresantes, las estrategias de vida de varias especies y la tolerancia de las especies a las condiciones climáticas nuevas.


Asunto(s)
Ecosistema , Pradera , Animales , Conservación de los Recursos Naturales , Tiempo (Meteorología) , Aves/fisiología , América del Norte , Cambio Climático
4.
Proc Biol Sci ; 290(2010): 20231398, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37935364

RESUMEN

Responses of wildlife to climate change are typically quantified at the species level, but physiological evidence suggests significant intraspecific variation in thermal sensitivity given adaptation to local environments and plasticity required to adjust to seasonal environments. Spatial and temporal variation in thermal responses may carry important implications for climate change vulnerability; for instance, sensitivity to extreme weather may increase in specific regions or seasons. Here, we leverage high-resolution observational data from eBird to understand regional and seasonal variation in thermal sensitivity for 21 bird species. Across their ranges, most birds demonstrated regional and seasonal variation in both thermal peak and range, or the temperature and range of temperatures when observations peaked. Some birds demonstrated constant thermal peaks or ranges across their geographical distributions, while others varied according to local and current environmental conditions. Across species, birds typically demonstrated either geographical or seasonal adaptation to climate. Local adaptation and phenotypic plasticity are likely important but neglected aspects of organismal responses to climate change.


Asunto(s)
Animales Salvajes , Aves , Animales , Estaciones del Año , Aves/fisiología , Temperatura , Cambio Climático , América del Norte
5.
Oecologia ; 202(4): 831-844, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37642742

RESUMEN

More frequent and extreme heat waves threaten climate-sensitive species. Structurally complex, older forests can buffer these effects by creating cool microclimates, although the mechanisms by which forest refugia mitigate physiological responses to heat exposure and subsequent population-level consequences remain relatively unexplored. We leveraged fine-scale movement data, doubly labeled water, and two decades of demographic data for the California spotted owl (Strix occidentalis occidentalis) to (1) assess the role of older forest characteristics as potential energetic buffers for individuals and (2) examine the subsequent value of older forests as refugia for a core population in the Sierra Nevada and a periphery population in the San Bernardino Mountains. Individuals spent less energy moving during warmer sampling periods and the presence of tall canopies facilitated energetic conservation during daytime roosting activities. In the core population, where tall-canopied forest was prevalent, temperature anomalies did not affect territory occupancy dynamics as warmer sites were both less likely to go extinct and less likely to become colonized, suggesting a trade-off between foraging opportunities and temperature exposure. In the peripheral population, sites were more likely to become unoccupied following warm summers, presumably because of less prevalent older forest conditions. While individuals avoided elevated energetic expenditure associated with temperature exposure, behavioral strategies to conserve energy may have diverted time and energy from reproduction or territory defense. Conserving older forests, which are threatened due to fire and drought, may benefit individuals from energetic consequences of exposure to stressful thermal conditions.


Asunto(s)
Clima , Refugio de Fauna , Temperatura , Bosques , Demografía
6.
Oecologia ; 202(1): 69-82, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37165146

RESUMEN

The snowshoe hare (Lepus americanus) possesses a broad suite of adaptations to winter, including a seasonal coat color molt. Recently, climate change has been implicated in the range contraction of snowshoe hares along the southern range boundary. With shortening snow season duration, snowshoe hares are experiencing increased camouflage mismatch with their environment reducing survival. Phenological variation of hare molt at regional scales could facilitate local adaptation in the face of climate change, but the level of variation, especially along the southern range boundary, is unknown. Using a network of trail cameras and historical museum specimens, we (1) developed contemporary and historical molt phenology curves in the Upper Great Lakes region, USA, (2) calculated molt rate and variability in and among populations, and (3) quantified the relationship of molt characteristics to environmental conditions for snowshoe hares across North America. We found that snowshoe hares across the region exhibited similar fall and spring molt phenologies, rates and variation. Yet, an insular island population of hares on Isle Royale National Park, MI, completed their molt a week earlier in the fall and initiated molt almost 2 weeks later in the spring as well as exhibited slower rates of molting in the fall season compared to the mainland. Over the last 100 years, snowshoe hares across the region have not shifted in fall molt timing; though contemporary spring molt appears to have advanced by 17 days (~ 4 days per decade) compared to historical molt phenology. Our research indicates that some variation in molt phenology exists for snowshoe hares in the Upper Great Lakes region, but whether this variation is enough to offset the consequences of climate change remains to be seen.


Asunto(s)
Liebres , Animales , Estaciones del Año , Cambio Climático , Muda , Variación Biológica Poblacional
7.
Ecology ; 104(5): e4019, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36882907

RESUMEN

Predators and prey engage in games where each player must counter the moves of the other, and these games include multiple phases operating at different spatiotemporal scales. Recent work has highlighted potential issues related to scale-sensitive inferences in predator-prey interactions, and there is growing appreciation that these may exhibit pronounced but predictable dynamics. Motivated by previous assertions about effects arising from foraging games between white-tailed deer and canid predators (coyotes and wolves), we used a large and year-round network of trail cameras to characterize deer and predator foraging games, with a particular focus on clarifying its temporal scale and seasonal variation. Linear features were strongly associated with predator detection rates, suggesting these play a central role in canid foraging tactics by expediting movement. Consistent with expectations for prey contending with highly mobile predators, deer responses were more sensitive to proximal risk metrics at finer spatiotemporal scales, suggesting that coarser but more commonly used scales of analysis may miss useful insights into prey risk-response. Time allocation appears to be a key tactic for deer risk management and was more strongly moderated by factors associated with forage or evasion heterogeneity (forest cover, snow and plant phenology) than factors associated with the likelihood of predator encounter (linear features). Trade-offs between food and safety appeared to vary as much seasonally as spatially, with snow and vegetation phenology giving rise to a "phenology of fear." Deer appear free to counter predators during milder times of year, but a combination of poor foraging state, reduced forage availability, greater movements costs, and reproductive state dampen responsiveness during winter. Pronounced intra-annual variation in predator-prey interactions may be common in seasonal environments.


Asunto(s)
Coyotes , Ciervos , Lobos , Animales , Ciervos/fisiología , Conducta Predatoria , Miedo , Ecosistema
8.
J Anim Ecol ; 92(5): 1089-1101, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36932966

RESUMEN

Range boundaries are long-term biogeographic features of species distributions and abundance. However, many species demonstrate dynamic range boundaries, reflecting strong seasonal and annual variability in migratory behaviour. As a form of facultative migration, irruptions involve the movement of many individuals outside of their resident range in response to climate variability, resource availability, and demographic processes. Many species have experienced range shifts and altered phenology in response to modern climate change, but spatiotemporal changes in irruption dynamics are less well known. We quantified changes in the geography and periodicity of boreal bird irruptions across eastern North America from 1960 to 2021. Using data from Audubon's Christmas Bird Count for nine finch species, including several exhibiting recent population declines, we evaluated latitudinal trends in southern range and irruption boundaries and characterized irruption periodicity using spectral wavelet analysis. Six boreal birds exhibited significant northward shifts in their southern range boundaries and three species displayed shifts in their southern irruption boundaries. Irruption periodicity across multiple species was consistent across the 1960s and 1970s, culminating in frequent and synchronized irruptions of multiple species (superflights) during earlier decades. Coherence between species dampened beginning in the early 1980s as superflight periodicity became increasingly unstructured, finally reforming in recent decades, after 2000. Boreal birds are considered important sentinels of the boreal forests, and northward shifts and altered periodicity of irruptions may indicate broad-scale changes in climate- and resource-associated drivers operating across the boreal forests.


Asunto(s)
Migración Animal , Aves , Animales , Aves/fisiología , Migración Animal/fisiología , Estaciones del Año , Cambio Climático , Geografía
9.
Trends Ecol Evol ; 38(4): 324-336, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36402653

RESUMEN

Animals are facing novel 'timescapes' in which the stimuli entraining their daily activity patterns no longer match historical conditions due to anthropogenic disturbance. However, the ecological effects (e.g., altered physiology, species interactions) of novel activity timing are virtually unknown. We reviewed 1328 studies and found relatively few focusing on anthropogenic effects on activity timing. We suggest three hypotheses to stimulate future research: (i) activity-timing mismatches determine ecological effects, (ii) duration and timing of timescape modification influence effects, and (iii) consequences of altered activity timing vary biogeographically due to broad-scale variation in factors compressing timescapes. The continued growth of sampling technologies promises to facilitate the study of the consequences of altered activity timing, with emerging applications for biodiversity conservation.


Asunto(s)
Biodiversidad , Ecosistema , Animales
10.
Proc Natl Acad Sci U S A ; 119(52): e2206339119, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36534801

RESUMEN

Human disturbance may fundamentally alter the way that species interact, a prospect that remains poorly understood. We investigated whether anthropogenic landscape modification increases or decreases co-occurrence-a prerequisite for species interactions-within wildlife communities. Using 4 y of data from >2,000 camera traps across a human disturbance gradient in Wisconsin, USA, we considered 74 species pairs (classifying pairs as low, medium, or high antagonism to account for different interaction types) and used the time between successive detections of pairs as a measure of their co-occurrence probability and to define co-occurrence networks. Pairs averaged 6.1 [95% CI: 5.3, 6.8] d between detections in low-disturbance landscapes (e.g., national forests) but 4.1 [3.5, 4.7] d between detections in high-disturbance landscapes, such as those dominated by urbanization or intensive agriculture. Co-occurrence networks showed higher connectance (i.e., a larger proportion of the possible co-occurrences) and greater proportions of low-antagonism pairs in disturbed landscapes. Human-mediated increases in species abundance (possibly via resource subsidies) appeared more important than behavioral mechanisms (e.g., changes in daily activity timing) in driving these patterns of compressed co-occurrence in disturbed landscapes. The spatiotemporal compression of species co-occurrences in disturbed landscapes likely strengthens interactions like competition, predation, and infection unless species can avoid each other at fine spatiotemporal scales. Regardless, human-mediated increases in co-occurrence with-and hence increased exposure to-predators or competitors might elevate stress levels in individual animals, with possible cascading effects across populations, communities, and ecosystems.


Asunto(s)
Conducción de Automóvil , Ecosistema , Animales , Humanos , Bosques , Probabilidad , Animales Salvajes
11.
Ecol Evol ; 12(9): e9269, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36177137

RESUMEN

Animal behaviors are often modified in urban settings due to changes in species assemblages and interactions. The ability of prey to respond to a predator is a critical behavior, but urban populations may experience altered predation pressure, food supplementation, and other human-mediated disturbances that modify their responsiveness to predation risk and promote habituation.Citizen-science programs generally focus on the collection and analysis of observational data (e.g., bird checklists), but there has been increasing interest in the engagement of citizen scientists for ecological experimentation.Our goal was to implement a behavioral experiment in which citizen scientists recorded antipredator behaviors in wild birds occupying urban areas. In North America, increasing populations of Accipiter hawks have colonized suburban and urban areas and regularly prey upon birds that frequent backyard bird feeders. This scenario, of an increasingly common avian predator hunting birds near human dwellings, offers a unique opportunity to characterize antipredator behaviors within urban passerines.For two winters, we engaged citizen scientists in Chicago, IL, USA to deploy a playback experiment and record antipredator behaviors in backyard birds. If backyard birds maintained their antipredator behaviors, we hypothesized that birds would decrease foraging behaviors and increase vigilance in response to a predator cue (hawk playback) but that these responses would be mediated by flock size, presence of sentinel species, body size, tree cover, and amount of surrounding urban area.Using a randomized control-treatment design, citizen scientists at 15 sites recorded behaviors from 3891 individual birds representing 22 species. Birds were more vigilant and foraged less during the playback of a hawk call, and these responses were strongest for individuals within larger flocks and weakest in larger-bodied birds. We did not find effects of sentinel species, tree cover, or urbanization.By deploying a behavioral experiment, we found that backyard birds inhabiting urban landscapes largely maintained antipredator behaviors of increased vigilance and decreased foraging in response to predator cues. Experimentation in citizen science poses challenges (e.g., observation bias, sample size limitations, and reduced complexity in protocol design), but unlike programs focused solely on observational data, experimentation allows researchers to disentangle the complex factors underlying animal behavior and species interactions.

12.
Ecol Evol ; 11(22): 16006-16020, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34824807

RESUMEN

Grassland birds are among the most globally threatened bird groups due to substantial degradation of native grassland habitats. However, the current network of grassland conservation areas may not be adequate for halting population declines and biodiversity loss. Here, we evaluate a network of grassland conservation areas within Wisconsin, U.S.A., that includes both large Focal Landscapes and smaller targeted conservation areas (e.g., Grassland Bird Conservation Areas, GBCAs) established within them. To date, this conservation network has lacked baseline information to assess whether the current placement of these conservation areas aligns with population hot spots of grassland-dependent taxa. To do so, we fitted data from thousands of avian point-count surveys collected by citizen scientists as part of Wisconsin's Breeding Bird Atlas II with multinomial N-mixture models to estimate habitat-abundance relationships, develop spatially explicit predictions of abundance, and establish ecological baselines within priority conservation areas for a suite of obligate grassland songbirds. Next, we developed spatial randomization tests to evaluate the placement of this conservation network relative to randomly placed conservation networks. Overall, less than 20% of species statewide populations were found within the current grassland conservation network. Spatial tests demonstrated a high representation of this bird assemblage within the entire conservation network, but with a bias toward birds associated with moderately tallgrasses relative to those associated with shortgrasses or tallgrasses. We also found that GBCAs had higher representation at Focal Landscape rather than statewide scales. Here, we demonstrated how combining citizen science data with hierarchical modeling is a powerful tool for estimating ecological baselines and conducting large-scale evaluations of an existing conservation network for multiple grassland birds. Our flexible spatial randomization approach offers the potential to be applied to other protected area networks and serves as a complementary tool for conservation planning efforts globally.

13.
Ecol Appl ; 31(8): e02436, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34374154

RESUMEN

Biological data collection is entering a new era. Community science, satellite remote sensing (SRS), and local forms of remote sensing (e.g., camera traps and acoustic recordings) have enabled biological data to be collected at unprecedented spatial and temporal scales and resolution. There is growing interest in developing observation networks to collect and synthesize data to improve broad-scale ecological monitoring, but no examples of such networks have emerged to inform decision-making by agencies. Here, we present the implementation of one such jurisdictional observation network (JON), Snapshot Wisconsin, which links synoptic environmental data derived from SRS to biodiversity observations collected continuously from a trail camera network to support management decision-making. We use several examples to illustrate that Snapshot Wisconsin improves the spatial, temporal, and biological resolution and extent of information available to support management, filling gaps associated with traditional monitoring and enabling consideration of new management strategies. JONs like Snapshot Wisconsin further strengthen monitoring inference by contributing novel lines of evidence useful for corroboration or integration. SRS provides environmental context that facilitates inference, prediction, and forecasting, and ultimately helps managers formulate, test, and refine conceptual models for the monitored systems. Although these approaches pose challenges, Snapshot Wisconsin demonstrates that expansive observation networks can be tractably managed by agencies to support decision making, providing a powerful new tool for agencies to better achieve their missions and reshape the nature of environmental decision-making.


Asunto(s)
Biodiversidad , Tecnología de Sensores Remotos , Monitoreo del Ambiente , Modelos Teóricos , Wisconsin
14.
Ecol Evol ; 11(24): 18248-18270, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35003671

RESUMEN

Extensive restoration and translocation efforts beginning in the mid-20th century helped to reestablish eastern wild turkeys (Meleagris gallopavo silvestris) throughout their ancestral range. The adaptability of wild turkeys resulted in further population expansion in regions that were considered unfavorable during initial reintroductions across the northern United States. Identification and understanding of species distributions and contemporary habitat associations are important for guiding effective conservation and management strategies across different ecological landscapes. To investigate differences in wild turkey distribution across two contrasting regions, heavily forested northern Wisconsin, USA, and predominately agricultural southeast Wisconsin, we conducted 3050 gobbling call-count surveys from March to May of 2014-2018 and used multiseason correlated-replicate occupancy models to evaluate occupancy-habitat associations and distributions of wild turkeys in each study region. Detection probabilities varied widely and were influenced by sampling period, time of day, and wind speed. Spatial autocorrelation between successive stations was prevalent along survey routes but was stronger in our northern study area. In heavily forested northern Wisconsin, turkeys were more likely to occupy areas characterized by moderate availability of open land cover. Conversely, large agricultural fields decreased the likelihood of turkey occupancy in southeast Wisconsin, but occupancy probability increased as upland hardwood forest cover became more aggregated on the landscape. Turkeys in northern Wisconsin were more likely to occupy landscapes with less snow cover and a higher percentage of row crops planted in corn. However, we were unable to find supporting evidence in either study area that the abandonment of turkeys from survey routes was associated with snow depth or with the percentage of agricultural cover. Spatially, model-predicted estimates of patch-specific occupancy indicated turkey distribution was nonuniform across northern and southeast Wisconsin. Our findings demonstrated that the environmental constraints of turkey occupancy varied across the latitudinal gradient of the state with open cover, snow, and row crops being influential in the north, and agricultural areas and hardwood forest cover important in the southeast. These forces contribute to nonstationarity in wild turkey-environment relationships. Key habitat-occupancy associations identified in our results can be used to prioritize and strategically target management efforts and resources in areas that are more likely to harbor sustainable turkey populations.

15.
Conserv Biol ; 35(1): 88-100, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32297655

RESUMEN

The rapid improvement of camera traps in recent decades has revolutionized biodiversity monitoring. Despite clear applications in conservation science, camera traps have seldom been used to model the abundance of unmarked animal populations. We sought to summarize the challenges facing abundance estimation of unmarked animals, compile an overview of existing analytical frameworks, and provide guidance for practitioners seeking a suitable method. When a camera records multiple detections of an unmarked animal, one cannot determine whether the images represent multiple mobile individuals or a single individual repeatedly entering the camera viewshed. Furthermore, animal movement obfuscates a clear definition of the sampling area and, as a result, the area to which an abundance estimate corresponds. Recognizing these challenges, we identified 6 analytical approaches and reviewed 927 camera-trap studies published from 2014 to 2019 to assess the use and prevalence of each method. Only about 5% of the studies used any of the abundance-estimation methods we identified. Most of these studies estimated local abundance or covariate relationships rather than predicting abundance or density over broader areas. Next, for each analytical approach, we compiled the data requirements, assumptions, advantages, and disadvantages to help practitioners navigate the landscape of abundance estimation methods. When seeking an appropriate method, practitioners should evaluate the life history of the focal taxa, carefully define the area of the sampling frame, and consider what types of data collection are possible. The challenge of estimating abundance of unmarked animal populations persists; although multiple methods exist, no one method is optimal for camera-trap data under all circumstances. As analytical frameworks continue to evolve and abundance estimation of unmarked animals becomes increasingly common, camera traps will become even more important for informing conservation decision-making.


Estimación de la Abundancia de Animales No Marcados con Base en Datos de Cámaras Trampa Resumen La rápida mejoría de las cámaras trampa en las décadas recientes ha revolucionado el monitoreo de la biodiversidad. A pesar de su clara aplicación en las ciencias de la conservación, las cámaras trampa han sido utilizadas pocas veces para modelar la abundancia de las poblaciones de animales no marcados. Buscamos resumir los retos que enfrenta la estimación de la abundancia de animales no marcados, compilar una perspectiva general de los marcos analíticos de trabajo existentes y proporcionar una guía para aquellos practicantes que buscan un método adecuado. Cuando una cámara registra múltiples detecciones de animales no marcados, no se puede determinar si las imágenes representan a diferentes individuos en movimiento o a un solo individuo que entra repetidamente a la zona de visión de la cámara. Sumado a esto, el movimiento animal ofusca una definición clara del área de muestreo y, como resultado, del área a la cual corresponde un estimado de abundancia. Después de reconocer estos retos, identificamos seis estrategias analíticas y revisamos 927 estudios con cámaras trampa publicados entre 2014 y 2019 para evaluar el uso y la prevalencia de cada método. Solamente en el 5% de los estudios se usó cualquiera de los métodos de estimación de abundancia que identificamos. La mayoría de estos estudios estimaron la abundancia local o las relaciones de covarianza en lugar de predecir la abundancia o la densidad a lo largo de áreas más amplias. Después, para cada estrategia analítica, recopilamos los requerimientos de datos, suposiciones, ventajas y desventajas para ayudar a los practicantes a navegar el paisaje de los métodos de estimación de abundancia. Cuando los practicantes busquen un método apropiado deberán evaluar la historia de vida del taxón focal, definir cuidadosamente el área del marco de muestreo y considerar cuáles tipos de recolección de datos son posibles. El reto de estimar la abundancia de poblaciones de animales no marcados persiste; aunque existan muchos métodos, no hay método único óptimo para los datos de las cámaras trampa que cumpla con todas las circunstancias. Mientras los marcos analíticos de trabajo sigan evolucionando y la estimación de la abundancia de animales no marcados sea cada vez más común, las cámaras trampa serán todavía más importantes para informar la toma de decisiones de conservación.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Animales , Densidad de Población
16.
J Anim Ecol ; 90(2): 317-329, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32875563

RESUMEN

Climate change and habitat loss pose the greatest contemporary threats to biodiversity, but their impacts on populations largely vary across species. These differential responses could be caused by complex interactions between landscape and climate change and species-specific sensitivities. Understanding the factors that determine which species are most vulnerable to the synergistic effects of climate change and habitat loss is a high conservation priority. Here, we ask (a) whether and to what extent land cover moderates the impacts of winter weather on population dynamics of wintering birds, and (b) what role species' physiology might play in modifying their responses to changing weather conditions. To address these questions, we used thousands of observations collected by citizen scientists participating in Project FeederWatch to build dynamic occupancy models for 14 species of wintering birds. Populations of wintering birds were more dynamic, having higher rates of local extinction and colonization, in more forested landscapes during extreme cold-presumably enabling them to better track resources. However, urban areas appeared to provide refuge for some species, as demonstrated by increased local colonization during the harshest winter weather. Lastly, we found that species-specific differences in thermal tolerances strongly influenced occupancy dynamics such that species that are less cold-tolerant were more likely to go locally extinct at colder sites and during colder periods throughout winter. Together, our results suggest that species that are less cold-tolerant and populations occupying less forested landscapes are most vulnerable to extreme winter weather.


Asunto(s)
Aves , Ecosistema , Animales , Biodiversidad , Cambio Climático , Dinámica Poblacional , Tiempo (Meteorología)
17.
Ecology ; 102(2): e03241, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33190269

RESUMEN

Detection/nondetection data are widely collected by ecologists interested in estimating species distributions, abundances, and phenology, and are often imperfect. Recent model development has focused on accounting for both false-positive and false-negative errors given evidence that misclassification is common across many sampling protocols. To date, however, model-based solutions to false-positive error have largely addressed occupancy estimation. We describe a generalized model structure that allows investigators to account for false-positive error in detection/nondetection data across a broad range of ecological parameters and model classes, and demonstrate that previously developed model-based solutions are special cases of the generalized model. Simulation results demonstrate that estimators for abundance and migratory arrival time ignoring false-positive error exhibit severe (20-70%) relative bias even when only 5-10% of detections are false positives. Bias increased when false-positive detections were more likely to occur at sites or within occasions in which true positive detections were unlikely to occur. Models accounting for false-positive error following the site-confirmation or observation-confirmation designs generally reduced bias substantially, even when few detections were confirmed as true or false positives or when the process model for false-positive error was misspecified. Results from an empirical example focusing on gray fox (Urocyon cinereoargenteus) abundance in Wisconsin, USA reinforce concerns that biases induced by false-positive error can also distort spatial predictions often used to guide decision making. Model sensitivity to false-positive error extends well beyond occupancy estimation, but encouragingly, model-based solutions developed for occupancy estimators are generalizable and effective across a range of models widely used in ecological research.


Asunto(s)
Ecología , Zorros , Animales , Sesgo , Simulación por Computador , Dinámica Poblacional , Wisconsin
18.
Ecol Evol ; 10(23): 12777-12791, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33304493

RESUMEN

Grassland birds have exhibited dramatic and widespread declines since the mid-20th century. Greater prairie chickens (Tympanuchus cupido pinnatus) are considered an umbrella species for grassland conservation and are frequent targets of management, but their responses to land use and management can be quite variable. We used data collected during 2007-2009 and 2014-2015 to investigate effects of land use and grassland management practices on habitat selection and survival rates of greater prairie chickens in central Wisconsin, USA. We examined habitat, nest-site, and brood-rearing site selection by hens and modeled effects of land cover and management on survival rates of hens, nests, and broods. Prairie chickens consistently selected grassland over other cover types, but selection or avoidance of management practices varied among life-history stages. Hen, nest, and brood survival rates were influenced by different land cover types and management practices. At the landscape scale, hens selected areas where brush and trees had been removed during the previous year, which increased hen survival. Hens selected nest sites in hay fields and brood-rearing sites in burned areas, but prescribed fire had a negative influence on hen survival. Brood survival rates were positively associated with grazing and were highest when home ranges contained ≈15%-20% shrub/tree cover. The effects of landscape composition on nest survival were ambiguous. Collectively, our results highlight the importance of evaluating responses to management efforts across a range of life-history stages and suggest that a variety of management practices are likely necessary to provide structurally heterogeneous, high-quality habitat for greater prairie chickens. Brush and tree removal, grazing, hay cultivation, and prescribed fire may be especially beneficial for prairie chickens in central Wisconsin, but trade-offs among life-history stages and the timing of management practices must be considered carefully.

19.
Glob Chang Biol ; 26(11): 6350-6362, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32871618

RESUMEN

Winter climate warming is rapidly leading to changes in snow depth and soil temperatures across mid- and high-latitude ecosystems, with important implications for survival and distribution of species that overwinter beneath the snow. Amphibians are a particularly vulnerable group to winter climate change because of the tight coupling between their body temperature and metabolic rate. Here, we used a mechanistic microclimate model coupled to an animal biophysics model to predict the spatially explicit effects of future climate change on the wintering energetics of a freeze-tolerant amphibian, the Wood Frog (Lithobates sylvaticus), across its distributional range in the eastern United States. Our below-the-snow microclimate simulations were driven by dynamically downscaled climate projections from a regional climate model coupled to a one-dimensional model of the Laurentian Great Lakes. We found that warming soil temperatures and decreasing winter length have opposing effects on Wood Frog winter energy requirements, leading to geographically heterogeneous implications for Wood Frogs. While energy expenditures and peak body ice content were predicted to decline in Wood Frogs across most of our study region, we identified an area of heightened energetic risk in the northwestern part of the Great Lakes region where energy requirements were predicted to increase. Because Wood Frogs rely on body stores acquired in fall to fuel winter survival and spring breeding, increased winter energy requirements have the potential to impact local survival and reproduction. Given the geographically variable and intertwined drivers of future under-snow conditions (e.g., declining snow depths, rising air temperatures, shortening winters), spatially explicit assessments of species energetics and risk will be important to understanding the vulnerability of subnivium-adapted species.


Asunto(s)
Ecosistema , Nieve , Animales , Cambio Climático , Great Lakes Region , Ranidae , Estaciones del Año
20.
Proc Biol Sci ; 287(1934): 20200609, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32900309

RESUMEN

For overwintering species, individuals' ability to find refugia from inclement weather and predators probably confers strong fitness benefits. How animals use their environment can be mediated by their personality (e.g. risk-taking), but does personality mediate how overwintering species select refugia? Snow cover is a dynamic winter characteristic that can influence crypsis or provide below-the-snow refugia. We explored how wintering ruffed grouse (Bonasa umbellus) selected snow roosting sites, a behaviour that reduces stress and cold exposure. We linked selection for approximately 700 roosts with survival of 42 grouse, and showed that grouse generally selected deeper snow and warmer areas. Grouse found in shallow snow were less likely to survive winter. However, individuals that selected deep snow improved their survival, suggesting that demographic consequences of selecting winter refugia are mediated by differences in personality. Our study provides a crucial, and seldom addressed, link between personality in resource selection and resulting demographic consequences.


Asunto(s)
Galliformes/fisiología , Refugio de Fauna , Animales , Demografía , Personalidad , Estaciones del Año , Nieve
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA