Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34884741

RESUMEN

ATP, one of the signaling molecules most commonly secreted in the nervous system and capable of stimulating multiple pathways, binds to the ionotropic purinergic receptors, in particular, the P2X7 receptor (P2X7R) and stimulates neuronal cell death. Given this effect of purinergic receptors on the viability of dopaminergic neurons model cells and that Ras GTPases control Erk1/2-regulated mitogen-activated cell proliferation and survival, we have investigated the role of the small GTPases of the Ras superfamily, together with their regulatory and effector molecules as the potential molecular intermediates in the P2X7R-regulated cell death of SN4741 dopaminergic neurons model cells. Here, we demonstrate that the neuronal response to purinergic stimulation involves the Calmodulin/RasGRF1 activation of the small GTPase Ras and Erk1/2. We also demonstrate that tyrosine phosphatase PTPRß and other tyrosine phosphatases regulate the small GTPase activation pathway and neuronal viability. Our work expands the knowledge on the intracellular responses of dopaminergic cells by identifying new participating molecules and signaling pathways. In this sense, the study of the molecular circuitry of these neurons is key to understanding the functional effects of ATP, as well as considering the importance of these cells in Parkinson's Disease.


Asunto(s)
Neuronas Dopaminérgicas/enzimología , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animales , Señalización del Calcio , Línea Celular , Supervivencia Celular , Activación Enzimática , Ratones , Enfermedad de Parkinson/enzimología , Proteínas ras/metabolismo , ras-GRF1/metabolismo
2.
Int J Mol Sci ; 21(17)2020 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878220

RESUMEN

Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs). Moreover, small GTPases transduce signals by their downstream effector molecules. Many studies demonstrate that small GTPases of the Ras family are involved in neurodegeneration processes. Here, in this review, we focus on the signaling pathways controlled by these small protein superfamilies that culminate in neurodegenerative pathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD). Specifically, we concentrate on the two most studied families of the Ras superfamily: the Ras and Rho families. We summarize the latest findings of small GTPases of the Ras and Rho families in neurodegeneration in order to highlight these small proteins as potential therapeutic targets capable of slowing down different neurodegenerative diseases.


Asunto(s)
Proteínas de Unión al GTP Monoméricas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Proteínas ras/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Humanos , Transducción de Señal
3.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31775340

RESUMEN

McArdle disease, also known as glycogen storage disease type V (GSDV), is characterized by exercise intolerance, the second wind phenomenon, and high serum creatine kinase activity. Here, we recapitulate PYGM mutations in the population responsible for this disease. Traditionally, McArdle disease has been considered a metabolic myopathy caused by the lack of expression of the muscle isoform of the glycogen phosphorylase (PYGM). However, recent findings challenge this view, since it has been shown that PYGM is present in other tissues than the skeletal muscle. We review the latest studies about the molecular mechanism involved in glycogen phosphorylase activity regulation. Further, we summarize the expression and functional significance of PYGM in other tissues than skeletal muscle both in health and McArdle disease. Furthermore, we examine the different animal models that have served as the knowledge base for better understanding of McArdle disease. Finally, we give an overview of the latest state-of-the-art clinical trials currently being carried out and present an updated view of the current therapies.


Asunto(s)
Glucógeno Fosforilasa/metabolismo , Enfermedad del Almacenamiento de Glucógeno Tipo V/patología , Músculo Esquelético/patología , Animales , Enfermedad del Almacenamiento de Glucógeno Tipo V/enzimología , Humanos , Músculo Esquelético/enzimología
4.
Pharmaceutics ; 11(11)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31652984

RESUMEN

Human Mesenchymal Stem Cells (hMSCs) play an important role as new therapeutic alternatives in advanced therapies and regenerative medicine thanks to their regenerative and immunomodulatory properties, and ability to migrate to the exact area of injury. These properties have made hMSCs one of the more promising cellular active substances at present, particularly in terms of the development of new and innovative hMSC-based products. Currently, numerous clinical trials are being conducted to evaluate the therapeutic activity of hMSC-based products on specific targets. Given the rapidly growing number of hMSC clinical trials in recent years and the complexity of these products due to their cellular component characteristics and medicinal product status, there is a greater need to define more stringent, specific, and harmonized requirements to characterize the quality of the hMSCs and enhance the analysis of their safety and efficacy in final products to be administered to patients. These requirements should be implemented throughout the manufacturing process to guarantee the function and integrity of hMSCs and to ensure that the hMSC-based final product consistently meets its specifications across batches. This paper describes the principal phases involved in the design of the manufacturing process and updates the specific technical requirements needed to address the appropriate clinical use of hMSC-based products. The challenges and limitations to evaluating the safety, efficacy, and quality of hMSCs have been also reviewed and discussed.

5.
Front Mol Neurosci ; 11: 333, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271323

RESUMEN

Oligodendrocytes are highly vulnerable to glutamate excitotoxicity, a central mechanism involved in tissue damage in Multiple Sclerosis (MS). Sustained activation of AMPA receptors in rat oligodendrocytes induces cytosolic calcium overload, mitochondrial depolarization, increase of reactive oxygen species, and activation of intracelular pathways resulting in apoptotic cell death. Although many signals driven by excitotoxicity have been identified, some of the key players are still under investigation. Casein kinase 2 (CK2) is a serine/threonine kinase, constitutively expressed in all eukaryotic tissues, involved in cell proliferation, malignant transformation and apoptosis. In this study, we identify CK2 as a critical regulator of oligodendrocytic death pathways and elucidate its role as a signal inductor following excitotoxic insults. We provide evidence that CK2 activity is up-regulated in AMPA-treated oligodendrocytes and CK2 inhibition significantly diminished AMPA receptor-induced oligodendroglial death. In addition, we analyzed mitogen-activated protein kinase (MAPK) signaling after excitotoxic insult. We observed that AMPA receptor activation induced a rapid increase in c-Jun N-terminal kinase (JNK) and p38 phosphorylation that was reduced after CK2 inhibition. Moreover, blocking their phosphorylation, we enhanced oligodendrocyte survival after excitotoxic insult. Finally, we observed that the tumor suppressor p53 is activated during AMPA receptor-induced cell death and, interestingly, down-regulated by JNK or CK2 inhibition. Together, these data indicate that the increase in CK2 activity induced by excitotoxic insults regulates MAPKs, triggers p53 activation and mediates subsequent oligodendroglial loss. Therefore, targeting CK2 may be a useful strategy to prevent oligodendrocyte death in MS and other diseases involving central nervous system (CNS) white matter.

6.
Cell Calcium ; 47(3): 264-72, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20061018

RESUMEN

Amyloid beta (Abeta) oligomers accumulate in brain tissue of Alzheimer disease patients and are related to pathogenesis. The precise mechanisms by which Abeta oligomers cause neurotoxicity remain unresolved. In this study, we investigated the role of ionotropic glutamate receptors on the intracellular Ca2+ overload caused by Abeta. Using rat cortical neurons in culture and entorhinal-hippocampal organotypic slices, we found that Abeta oligomers significantly induced inward currents, intracellular Ca2+ increases and apoptotic cell death through a mechanism requiring NMDA and AMPA receptor activation. The massive entry of Ca2+ through NMDA and AMPA receptors induced by Abeta oligomers caused mitochondrial dysfunction as indicated by mitochondrial Ca2+ overload, oxidative stress and mitochondrial membrane depolarization. Importantly, chronic treatment with nanomolar concentration of Abeta oligomers also induced NMDA- and AMPA receptor-dependent cell death in entorhinal cortex and hippocampal slice cultures. Together, these results indicate that overactivation of NMDA and AMPA receptor, mitochondrial Ca2+ overload and mitochondrial damage underlie the neurotoxicity induced by Abeta oligomers. Hence, drugs that modulate these events can prevent from Abeta damage to neurons in Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Degeneración Nerviosa/metabolismo , Receptores de Glutamato/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/toxicidad , Animales , Apoptosis/fisiología , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Metabolismo Energético/fisiología , Corteza Entorrinal/metabolismo , Hipocampo/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/metabolismo , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/fisiopatología , Técnicas de Cultivo de Órganos , Estrés Oxidativo/fisiología , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Receptores de Glutamato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...