Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5706, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977676

RESUMEN

Haematopoietic stem cells (HSCs) possess unique physiological adaptations to sustain blood cell production and cope with stress responses throughout life. To maintain these adaptations, HSCs rely on maintaining a tightly controlled protein translation rate. However, the mechanism of how HSCs regulate protein translation remains to be fully elucidated. In this study, we investigate the role of transfer RNA (tRNA) m1A58 'writer' proteins TRMT6 and TRMT61A in regulating HSCs function. Trmt6 deletion promoted HSC proliferation through aberrant activation of mTORC1 signaling. TRMT6-deficient HSCs exhibited an impaired self-renewal ability in competitive transplantation assay. Mechanistically, single cell RNA-seq analysis reveals that the mTORC1 signaling pathway is highly upregulated in HSC-enriched cell populations after Trmt6 deletion. m1A-tRNA-seq and Western blot analysis suggest that TRMT6 promotes methylation modification of specific tRNA and expression of TSC1, fine-tuning mTORC1 signaling levels. Furthermore, Pharmacological inhibition of the mTORC1 pathway rescued functional defect in TRMT6-deficient HSCs. To our knowledge, this study is the first to elucidate a mechanism by which TRMT6-TRMT61A complex-mediated tRNA-m1A58 modification regulates HSC homeostasis.


Asunto(s)
Proliferación Celular , Células Madre Hematopoyéticas , Diana Mecanicista del Complejo 1 de la Rapamicina , ARN de Transferencia , Transducción de Señal , Proteína 1 del Complejo de la Esclerosis Tuberosa , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Animales , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Ratones , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Autorrenovación de las Células/genética , Ratones Noqueados , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones Endogámicos C57BL , Metilación
2.
Cell Prolif ; 56(8): e13410, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36722312

RESUMEN

Muscle stem cells are required for the homeostasis and regeneration of mammalian skeletal muscles. It has been reported that RNA N6-methyladenosine (m6A) modifications play a pivotal role in muscle development and regeneration. Nevertheless, we know little about which m6A reader regulates mammalian muscle stem cells. Here, we discovered that the m6A reader Ythdc1 is indispensable for mouse skeletal muscle regeneration and proliferation of muscle stem cells. In the absence of Ythdc1, Muscle stem cells in adult mice are unable to exit from quiescence. Mechanistically, Ythdc1 binds to m6A-modified Pi4k2a and Pi4kb mRNAs to regulate their alternative splicing and thus PI4K-Akt-mTOR signalling. Ythdc1-null muscle stem cells show a deficiency in phosphatidylinositol (PI) 3,4,5-trisphosphate, phospho-Akt and phospho-S6, which correlates with a failure in exit from quiescence. Our findings connect dynamic RNA methylation to the regulation of PI4K-Akt-mTOR signalling during stem cell proliferation and adult tissue regeneration.


Asunto(s)
Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Proliferación Celular , Músculos/metabolismo , Mamíferos/metabolismo
3.
Leukemia ; 36(4): 1123-1131, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35039639

RESUMEN

Hematopoietic stress drives quiescent hematopoietic stem cells (HSCs) to proliferate, generating reactive oxygen species (ROS) and oxidative DNA damage including abasic sites. Such a coupling between rapid DNA replication and a burst of abasic site formation during HSC stress responses, however, presents a challenge to accurately repair abasic sites located in replication-associated single-stranded DNA. Here we show that HMCES, a novel shield of abasic sites, plays pivotal roles in overcoming this challenge upon HSC activation. While HMCES was dispensable for steady-state hematopoiesis, Hmces-deficient HSCs exhibited compromised long-term self-renewal capacity in response to hematopoietic stress such as myeloablation and transplantation. Loss of HMCES resulted in accumulation of DNA lesions due to impaired resolution of abasic sites generated by activation-induced ROS in activated HSCs and broad downregulation of DNA damage response and repair pathways. Moreover, Hmces-deficient mice died from bone marrow failure after exposure to sublethal irradiation, which also produces ROS. Notably, dysregulation of HMCES occurs frequently in acute lymphocytic leukemia (ALL) and is associated with poor clinical outcomes. Together, our findings not only highlighted HMCES as a novel genome protector in activated HSCs, but also position it as a potential selective target against ALL while sparing normal hematopoiesis.


Asunto(s)
Daño del ADN , Células Madre Hematopoyéticas , Animales , ADN/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/genética , Células Madre Hematopoyéticas/metabolismo , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...