Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 340: 139923, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37619751

RESUMEN

Advanced oxidation process (AOP) based on peroxymonosulfate (PMS) has aroused extensive discussion in the degradation of organic pollutants due to the strong oxidative ability of SO4•-. Great attention has been paid to developing transition metal catalysts for PMS activation. Still, few studies focused on the co-catalysis effect of non-redox metals. To study the co-catalysis of Mg and develop a more efficient metal catalyst, the CoMg2Mn-LDO was prepared by a co-precipitation method accompanied by calcination. The material showed an excellent ability for PMS activation. 97.1% of Orange Ⅱ was degraded within 15 min with the reaction rate constant (kobs) of 0.539 min-1 when pH equals 6.7, the dosages of CoMg2Mn-LDO and PMS were 90 mg L-1 and 100 mg L-1, respectively. By contrast, the value of kobs was 0.375 min-1 for the system of Co3Mn-LDO/PMS at the same experimental conditions. The electron paramagnetic resonance (EPR) and quenching experiments results proved the existence of O2•-, SO4•- and HO• in the CoMg2Mn-LDO/PMS system and the dominant role of SO4•- in Orange Ⅱ degradation. The synergistic effects among Co, Mn, and Mg were found to be responsible for the outstanding catalytic ability of CoMg2Mn-LDO. The presence of Mg could not only promote the formation of Mg-HSO5- and CoOH+ complexes but also reduce the leaching of Co and Mn, which accelerated the generation of free radicals and decreased secondary pollution risk. Based on the overall analysis, reasonable activation mechanisms of PMS and possible degradation pathways of Orange Ⅱ in this reaction system were proposed. This work proves that Mg could be applied as an effective co-catalytic element and provides new insight into developing transition metal catalysts for PMS-based AOPs.


Asunto(s)
Compuestos Azo , Peróxidos , Bencenosulfonatos , Cobalto
2.
J Hazard Mater ; 445: 130573, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-37055979

RESUMEN

In recent years, researchers have devoted themselves to developing composites containing cobalt as highly active heterogeneous catalysts of persulfate. Most of them reported that the catalytic degradation processes of organic pollutants were accompanied by the leaching of cobalt ions, but only a few studies considered the contribution of the dissolved cobalt ion to the degradation of organic compounds. A research paper in Journal of Hazardous Materials reported a study on synthesis, application and catalytic mechanisms of cobalt doped hydroxyapatite (Co-HAP) for Rhodamine B (RhB) degradation. We find that non-main catalytic mechanisms were listed and that the effect of Co-HAP was overestimated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...