Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(12): 3412-3415, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38875633

RESUMEN

Photoionization is one of the most fundamental processes in light-matter interaction. Advanced attosecond photoelectron spectroscopy provides the possibility to characterize the ultrafast photoemission process in an extremely short attosecond time scale. Following scattering symmetry rules, residual ions encode ultrafast photoionization prints at the instant of electron removal forming an alternative electron emission chronoscope. Here, we experimentally illustrate the attosecond ion reconstruction of attosecond beating by interference of two-photon transition (RABBIT)-like interferometry through the development of high-resolution ion momentum detection in atomic photoionization processes. Our ion interferometry presents identical momentum- and time-dependent scattering phase shift, as we observed in photoelectron spectroscopy, and thus demonstrates that ion interferometry can be a possible alternative attosecond approach to resolve the photoionization process, without the electron homogeneity limitation.

2.
Phys Rev Lett ; 131(20): 203201, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38039486

RESUMEN

Multiphoton light-matter interactions invoke a so-called "black box" in which the experimental observations contain the quantum interference between multiple pathways. Here, we employ polarization-controlled attosecond photoelectron metrology with a partial wave manipulator to deduce the pathway interference within this quantum 'black box" for the two-photon ionization of neon atoms. The angle-dependent and attosecond time-resolved photoelectron spectra are measured across a broad energy range. Two-photon phase shifts for each partial wave are reconstructed through the comprehensive analysis of these photoelectron spectra. We resolve the quantum interference between the degenerate p→d→p and p→s→p two-photon ionization pathways, in agreement with our theoretical simulations. Our approach thus provides an attosecond time-resolved microscope to look inside the "black box" of pathway interference in ultrafast dynamics of atoms, molecules, and condensed matter.

3.
Opt Express ; 31(16): 25467-25476, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37710432

RESUMEN

Driven by intense laser fields, the outgoing photoelectrons in molecules possess a quiver motion, resulting in the rise of the effective ionization potential. The coupling of the field-dressed ionization potential with abundant molecular dynamics complicates the laser-molecule interactions. Here, we demonstrate an approach to resolve photoelectron releasing order in the dissociative and non-dissociative channels of multiphoton ionization driven by an orthogonally polarized two-color femtosecond laser pulse. The photoelectron kinetic energy releases and the regular nodes in the photoelectron angular distributions due to the participation of different continuum partial waves allow us to deduce the field-dressed ionization potential of various channels. It returns the ponderomotive energy experienced by the outgoing electron and reveals the corresponding photoionization instants within the laser pulse. Our results provide a route to explore the complex strong-field ionization dynamics of molecules using two-dimensional photoelectron momentum spectroscopy.

4.
Phys Rev Lett ; 129(17): 173201, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36332237

RESUMEN

Attosecond time-resolved electron tunneling dynamics have been investigated by using attosecond angular streaking spectroscopy, where a clock reference to the laser field vector is required in atomic strong-field ionization and the situation becomes complicated in molecules. Here we reveal a resonant ionization process via a transient state by developing an electron-tunneling-site-resolved molecular attoclock in Ar-Kr^{+}. Two distinct deflection angles are observed in the photoelectron angular distribution in the molecular frame, corresponding to the direct and resonant ionization pathways. We find the electron is temporally trapped in the Coulomb potential wells of the Ar-Kr^{+} before finally releasing into the continuum when the electron tunnels through the internal barrier. By utilizing the direct tunneling ionization as a self-referenced arm of the attoclock, the time delay of the electron trapped in the resonant state is revealed to be 3.50±0.04 fs. Our results give an impetus to exploring the ultrafast electron dynamics in complex systems and also endow a semiclassical presentation of the electron trapping dynamics in a quantum resonant state.

5.
Nat Commun ; 13(1): 5072, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038537

RESUMEN

Attosecond chronoscopy is central to the understanding of ultrafast electron dynamics in matter from gas to the condensed phase with attosecond temporal resolution. It has, however, not yet been possible to determine the timing of individual partial waves, and steering their contribution has been a substantial challenge. Here, we develop a polarization-skewed attosecond chronoscopy serving as a partial wave meter to reveal the role of each partial wave from the angle-resolved photoionization phase shifts in rare gas atoms. We steer the relative ratio between different partial waves and realize a magnetic-sublevel-resolved atomic phase shift measurement. Our experimental observations are well supported by time-dependent R-matrix numerical simulations and analytical soft-photon approximation analysis. The symmetry-resolved, partial-wave analysis identifies the transition rate and phase shift property in the attosecond photoelectron emission dynamics. Our findings provide critical insights into the ubiquitous attosecond optical timer and the underlying attosecond photoionization dynamics.

6.
Opt Express ; 27(17): 24670-24681, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31510352

RESUMEN

In this study, the output energy in topological insulators (TIs)-based Erbium-doped fiber laser (EDFL) was improved using two strategies: bidirectional pumped laser cavity and saturable absorber (SA) with high damage threshold and large modulation depth. Using the chemical vapor deposition (CVD) method, Bismuth Selenide (Bi2Se3) film was synthesized and improved to a SA. Employing this CVD-Bi2Se3 SA in an EDFL, bright and bright-dark soliton operations were achieved. The average output power/pulse energy was 82.6 mW/48.3 nJ and 81.2 mW/47.5 nJ, respectively. The results demonstrate that CVD-Bi2Se3 can act as an excellent performance material to improve output power performance in TISA-based EDFL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA