Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 103(6): 103750, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652952

RESUMEN

Yolk carotenoid profile reflects the hen diet when corn grain is the only source of carotenoids, but corn origin and processing may affect carotenoid utilization. In the present study, 2 commercial dent corn hybrids differing in grain hardness (soft- and hard-type) were dried at low (40°C) and high (85°C) temperature and ground through a 5- and 9-mm sieve to investigate their effects on carotenoid bioavailability in laying hens. With 3 hens per cage, 168 Lohmann Brown laying hens were allocated to 8 dietary treatments (2 hybrids × 2 drying temperatures × 2 grinding sieves) in a completely randomized design (8 treatments × 7 cages). The trial lasted 8 wk, during which eggs were collected for analysis every 3 d until carotenoid content stabilized, and then once a week until the end of the experiment. The carotenoid profile of the experimental diets and yolks was analyzed using an HPLC method and deposition efficiency was calculated based on carotenoid contents, yolk weight, egg production and diet intake. The deposition efficiency for lutein, zeaxanthin, α- and ß-cryptoxanthin, and ß-carotene averaged 27.37, 18.67, 6.29, 3,32, and 0.94%, respectively. As expected, the tested hybrids highly affected the carotenoid content in egg yolk due to their differences in carotenoid profile. Interestingly, hard- and soft-type hybrids differed in the deposition efficiency for all individual carotenoids but not for the total carotenoids. High grain drying temperature tended to increase the bioavailability of lutein and zeaxanthin in both hybrids. For the hard-type hybrid, the content of ß-carotene in egg yolk was higher when grains were dried at a high temperature, while the opposite response was found in the soft-type hybrid. The effect of grinding sieve size was important for the zeaxanthin bioavailability in the soft-type hybrid only. In conclusion, our findings showed that corn hybrid had a primary influence on the carotenoid content in the yolks of laying hens, but grain processing may change the bioavailability of carotenoids.


Asunto(s)
Alimentación Animal , Carotenoides , Pollos , Dieta , Yema de Huevo , Zea mays , Animales , Pollos/fisiología , Zea mays/química , Alimentación Animal/análisis , Yema de Huevo/química , Dieta/veterinaria , Femenino , Carotenoides/metabolismo , Carotenoides/química , Carotenoides/análisis , Distribución Aleatoria , Disponibilidad Biológica , Manipulación de Alimentos/métodos , Fenómenos Fisiológicos Nutricionales de los Animales
2.
Food Res Int ; 177: 113909, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225147

RESUMEN

Carotenoids in maize grain degrade during storage, but the relationship between their stability and the physicochemical properties of the grain is unclear. Therefore, the carotenoid degradation rate in milled grain of three dent hybrids differing in grain hardness was evaluated at various temperatures (-20, 4 and 22 °C). The carotenoid degradation rate was calculated using first-order kinetics based on the content in the samples after 7, 14, 21, 28, 42, 56, 70 and 90 days of storage and related to the physicochemical properties of the grain. The highest grain hardness was found in the hybrid with the highest zein and endosperm lipid concentration, while the lowest grain hardness was found in the hybrid with the highest amylose content and the specific surface area of starch granule (SSA). As expected, carotenoids in milled maize grain were most stable at -20 °C, followed by storage at 4 and 22 °C. Tested hybrids differed in the degradation rate of zeaxanthin, α-cryptoxanthin and ß-carotene, and these responses were also temperature-dependent. In contrast, all hybrids showed similar degradation rate for lutein and ß-cryptoxanthin regardless of the storage temperature. Averaged over the hybrids, the degradation rate for individual carotenoids ranked as follows: lutein < zeaxanthin < α-cryptoxanthin < ß-cryptoxanthin < ß-carotene. The lower degradation rate for most carotenoids was mainly associated with a higher content of zein and specific endosperm lipids, with the exception of zeaxanthin, which showed an opposite pattern of response. Degradation rate for lutein and zeaxanthin negatively correlated with SSA, but interestingly, small starch granules were positively associated with higher degradation rate for mostcarotenoids. Dent-type hybrids may differ significantly in carotenoid degradation rate, which was associated with specific physicochemical properties of the maize grain.


Asunto(s)
Criptoxantinas , Luteína , Zeína , Luteína/análisis , beta Caroteno/química , Zea mays/química , Zeaxantinas/metabolismo , beta-Criptoxantina , Carotenoides/análisis , Grano Comestible/química , Almidón
3.
Molecules ; 28(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37446677

RESUMEN

Despite the high proportion of maize grain in animal diets, the contribution made by maize phytochemicals is neglected. Tocols and their contribution to the vitamin E content of animal diets are one example, exacerbated by sparse information on the tocol bioaccessibility of commercial hybrids. In this study, the contents of individual and total tocols and their bioaccessibility were determined in the grain samples of 103 commercial hybrids using a standardized INFOGEST digestion procedure. In the studied hybrids, total tocol content ranged from 19.24 to 54.44 µg/g of dry matter. The contents of micellar α-, γ-, δ-tocopherols, γ-tocotrienol, and total tocols correlated positively with the corresponding contents in the grain samples of the studied hybrids. In contrast, a negative correlation was observed between the bioaccessibility of γ- tocopherol, α- and γ-tocotrienol, and total tocols, along with the corresponding contents in the grain of studied hybrids. The highest bioaccessibility was exhibited by γ-tocotrienol (532.77 g/kg), followed by δ-tocopherol (529.88 g/kg), γ-tocopherol (461.76 g/kg), α-tocopherol (406.49 g/kg), and α-tocotrienol (359.07 g/kg). Overall, there are significant differences in the content and bioaccessibility of total and individual tocols among commercial maize hybrids, allowing the selection of hybrids for animal production based not only on crude chemical composition but also on the content of phytochemicals.


Asunto(s)
Tocotrienoles , Zea mays , Animales , Zea mays/química , Aves de Corral , Tocoferoles , Grano Comestible , gamma-Tocoferol , Digestión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA