Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768639

RESUMEN

Heterotis niloticus is a basal teleost, belonging to the Osteoglossidae family, which is widespread in many parts of Africa. The digestive tract of H. niloticus presents similar characteristics to those of higher vertebrates, exhibiting a gizzard-like stomach and lymphoid aggregates in the intestinal lamina propria. The adaptive immune system of teleost fish is linked with each of their mucosal body surfaces. In fish, the gut-associated lymphoid tissue (GALT) is generally a diffuse immune system that represents an important line of defense against those pathogens inhabiting the external environment that can enter through food. The GALT comprises intraepithelial lymphocytes, which reside in the epithelial layer, and lamina propria leukocytes, which consist of lymphocytes, macrophages, granulocytes, and dendritic-like cells. This study aims to characterize, for the first time, the leukocytes present in the GALT of H. niloticus, by confocal immuno- fluorescence techniques, using specific antibodies: toll-like receptor 2, major histocompatibility complex class II, S100 protein, serotonin, CD4, langerin, and inducible nitric oxide synthetase. Our results show massive aggregates of immune cells in the thickness of the submucosa, arranged in circumscribed oval-shaped structures that are morphologically similar to the isolated lymphoid follicles present in birds and mammals, thus expanding our knowledge about the intestinal immunity shown by this fish.


Asunto(s)
Mucosa Intestinal , Intestinos , Animales , Inmunohistoquímica , Peces , Tejido Linfoide , Mamíferos
2.
Acta Histochem ; 124(7): 151954, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36174310

RESUMEN

We have conducted a morphological and immunohistochemical study of the gills of juvenile specimens of the obligate air-breathing fish Heterotis niloticus. The study has been performed under normoxic and hypoxic conditions. The gills showed a reduced respiratory surface area by development of an interlamellar cellular mass (ILCM). The ILCM persisted without changes under both normoxia and hypoxia. Neuroepithelial cells (NECs), the major oxygen and hypoxia sensing cell type, were located in the distal end of the gill filaments and along the ILCM edges. These cells expressed 5HT, the neuronal isoform of the nitric oxide synthase (nNOS) and the vesicular acetylcholine transporter (VAChT). Furthermore, NECs appeared associated with nitrergic nerve fibres. The O2 levels did not modify the location, number or the immunohistochemical characteristics of NECs. Pavement cells covering the ILCM were also positive to nNOS and VAChT. The mechanisms of O2 sensing in the gills of Heterotis appears to involve several cell populations, the release of multiple neurotransmitters and a diversity of excitatory, inhibitory and modulatory mechanisms.


Asunto(s)
Peces , Branquias , Animales , Biomarcadores , Peces/metabolismo , Branquias/fisiología , Hipoxia , Óxido Nítrico Sintasa/metabolismo , Oxígeno/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA