Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37034630

RESUMEN

Olfactory sensory neurons (OSNs) are constantly exposed to pathogens, including viruses. However, serious brain infection via the olfactory route rarely occurs. When OSNs detect a virus, they coordinate local antiviral immune responses to stop virus progression to the brain. Despite effective immune control in the olfactory periphery, pathogen-triggered neuronal signals reach the CNS via the olfactory bulb (OB). We hypothesized that neuronal detection of a virus by OSNs initiates neuroimmune responses in the OB that prevent pathogen invasion. Using zebrafish ( Danio rerio ) as a model, we demonstrate viral-specific neuronal activation of OSNs projecting into the OB, indicating that OSNs are electrically activated by viruses. Further, behavioral changes are seen in both adult and larval zebrafish after viral exposure. By profiling the transcription of single cells in the OB after OSNs are exposed to virus, we found that both microglia and neurons enter a protective state. Microglia and macrophage populations in the OB respond within minutes of nasal viral delivery followed decreased expression of neuronal differentiation factors and enrichment of genes in the neuropeptide signaling pathway in neuronal clusters. Pituitary adenylate-cyclase-activating polypeptide ( pacap ), a known antimicrobial, was especially enriched in a neuronal cluster. We confirm that PACAP is antiviral in vitro and that PACAP expression increases in the OB 1 day post-viral treatment. Our work reveals how encounters with viruses in the olfactory periphery shape the vertebrate brain by inducing antimicrobial programs in neurons and by altering host behavior.

2.
Curr Biol ; 32(23): 5116-5125.e3, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36402136

RESUMEN

In this study, we investigated whether the larval zebrafish is sensitive to the presence of obstacles in its environment. Zebrafish execute fast escape swims when in danger of predation. We posited that collisions with solid objects during escape would be maladaptive to the fish, and therefore, the direction of escape swims should be informed by the locations of barriers. To test this idea, we developed a closed-loop imaging rig outfitted with barriers of various qualities. We show that when larval zebrafish escape in response to a non-directional vibrational stimulus, they use visual scene information to avoid collisions with obstacles. Our study demonstrates that barrier avoidance rate corresponds to the absolute distance of obstacles, as distant barriers outside of collision range elicit less bias than nearby collidable barriers that occupy the same amount of visual field. The computation of barrier avoidance is covert: the fact that fish will avoid barriers during escape cannot be predicted by its routine swimming behavior in the barrier arena. Finally, two-photon laser ablation experiments suggest that excitatory bias is provided to the Mauthner cell ipsilateral to approached barriers, either via direct excitation or a multi-step modulation process. We ultimately propose that zebrafish detect collidable objects via an integrative visual computation that is more complex than retinal occupancy alone, laying a groundwork for understanding how cognitive physical models observed in humans are implemented in an archetypal vertebrate brain. VIDEO ABSTRACT.


Asunto(s)
Acústica , Pez Cebra , Humanos , Animales , Larva , Natación
3.
Sci Adv ; 4(10): eaat6994, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30417089

RESUMEN

Cognitive impairments can be devastating for quality of life, and thus, preventing or counteracting them is of great value. To this end, the present study exploits the potential of the plant Rhodiola rosea and identifies the constituent ferulic acid eicosyl ester [icosyl-(2E)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-enoate (FAE-20)] as a memory enhancer. We show that food supplementation with dried root material from R. rosea dose-dependently improves odor-taste reward associative memory scores in larval Drosophila and prevents the age-related decline of this appetitive memory in adult flies. Task-relevant sensorimotor faculties remain unaltered. From a parallel approach, a list of candidate compounds has been derived, including R. rosea-derived FAE-20. Here, we show that both R. rosea-derived FAE-20 and synthetic FAE-20 are effective as memory enhancers in larval Drosophila. Synthetic FAE-20 also partially compensates for age-related memory decline in adult flies, as well as genetically induced early-onset loss of memory function in young flies. Furthermore, it increases excitability in mouse hippocampal CA1 neurons, leads to more stable context-shock aversive associative memory in young adult (3-month-old) mice, and increases memory scores in old (>2-year-old) mice. Given these effects, and given the utility of R. rosea-the plant from which we discovered FAE-20-as a memory enhancer, these results may hold potential for clinical applications.


Asunto(s)
Ácidos Cumáricos/farmacología , Ésteres/farmacología , Memoria/efectos de los fármacos , Rhodiola/química , Factores de Edad , Animales , Abejas , Conducta Animal/efectos de los fármacos , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Suplementos Dietéticos , Drosophila melanogaster , Miedo/efectos de los fármacos , Larva/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Extractos Vegetales/farmacología , Especificidad de la Especie
4.
Front Neuroanat ; 12: 57, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30127725

RESUMEN

In the insect brain, the mushroom body is a higher order brain area that is key to memory formation and sensory processing. Mushroom body (MB) extrinsic neurons leaving the output region of the MB, the lobes and the peduncle, are thought to be especially important in these processes. In the honeybee brain, a distinct class of MB extrinsic neurons, A3 neurons, are implicated in playing a role in learning. Their MB arborisations are either restricted to the lobes and the peduncle, here called A3 lobe connecting neurons, or they provide feedback information from the lobes to the input region of the MB, the calyces, here called A3 feedback neurons. In this study, we analyzed the morphology of individual A3 lobe connecting and feedback neurons using confocal imaging. A3 feedback neurons were previously assumed to innervate each lip compartment homogenously. We demonstrate here that A3 feedback neurons do not innervate whole subcompartments, but rather innervate zones of varying sizes in the MB lip, collar, and basal ring. We describe for the first time the anatomical details of A3 lobe connecting neurons and show that their connection pattern in the lobes resemble those of A3 feedback cells. Previous studies showed that A3 feedback neurons mostly connect zones of the vertical lobe that receive input from Kenyon cells of distinct calycal subcompartments with the corresponding subcompartments of the calyces. We can show that this also applies to the neck of the peduncle and the medial lobe, where both types of A3 neurons arborize only in corresponding zones in the calycal subcompartments. Some A3 lobe connecting neurons however connect multiple vertical lobe areas. Contrarily, in the medial lobe, the A3 neurons only innervate one division. We found evidence for both input and output areas in the vertical lobe. Thus, A3 neurons are more diverse than previously thought. The understanding of their detailed anatomy might enable us to derive circuit models for learning and memory and test physiological data.

5.
eNeuro ; 5(3)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29938214

RESUMEN

The mushroom body (MB) in insects is known as a major center for associative learning and memory, although exact locations for the correlating memory traces remain to be elucidated. Here, we asked whether presynaptic boutons of olfactory projection neurons (PNs) in the main input site of the MB undergo neuronal plasticity during classical odor-reward conditioning and correlate with the conditioned behavior. We simultaneously measured Ca2+ responses in the boutons and conditioned behavioral responses to learned odors in honeybees. We found that the absolute amount of the neural change for the rewarded but not for the unrewarded odor was correlated with the behavioral learning rate across individuals. The temporal profile of the induced changes matched with odor response dynamics of the MB-associated inhibitory neurons, suggestive of activity modulation of boutons by this neural class. We hypothesize the circuit-specific neural plasticity relates to the learned value of the stimulus and underlies the conditioned behavior of the bees.


Asunto(s)
Aprendizaje por Asociación/fisiología , Abejas/fisiología , Cuerpos Pedunculados/fisiología , Plasticidad Neuronal , Neuronas Receptoras Olfatorias/fisiología , Terminales Presinápticos/fisiología , Animales , Señalización del Calcio , Condicionamiento Clásico/fisiología , Femenino , Odorantes , Recompensa , Olfato
6.
Front Behav Neurosci ; 12: 279, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30740045

RESUMEN

The search for neural correlates of operant and observational learning requires a combination of two (experimental) conditions that are very difficult to combine: stable recording from high order neurons and free movement of the animal in a rather natural environment. We developed a virtual environment (VE) that simulates a simplified 3D world for honeybees walking stationary on an air-supported spherical treadmill. We show that honeybees perceive the stimuli in the VE as meaningful by transferring learned information from free flight to the virtual world. In search for neural correlates of learning in the VE, mushroom body extrinsic neurons were recorded over days during learning. We found changes in the neural activity specific to the rewarded and unrewarded visual stimuli. Our results suggest an involvement of the mushroom body extrinsic neurons in operant learning in the honeybee (Apis mellifera).

7.
Front Neuroanat ; 10: 90, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27746723

RESUMEN

In the honeybee brain, two prominent tracts - the medial and the lateral antennal lobe tract - project from the primary olfactory center, the antennal lobes (ALs), to the central brain, the mushroom bodies (MBs), and the protocerebral lobe (PL). Intracellularly stained uniglomerular projection neurons were reconstructed, registered to the 3D honeybee standard brain atlas, and then used to derive the spatial properties and quantitative morphology of the neurons of both tracts. We evaluated putative synaptic contacts of projection neurons (PNs) using confocal microscopy. Analysis of the patterns of axon terminals revealed a domain-like innervation within the MB lip neuropil. PNs of the lateral tract arborized more sparsely within the lips and exhibited fewer synaptic boutons, while medial tract neurons occupied broader regions in the MB calyces and the PL. Our data show that uPNs from the medial and lateral tract innervate both the core and the cortex of the ipsilateral MB lip but differ in their innervation patterns in these regions. In the mushroombody neuropil collar we found evidence for ALT boutons suggesting the collar as a multi modal input site including olfactory input similar to lip and basal ring. In addition, our data support the conclusion drawn in previous studies that reciprocal synapses exist between PNs, octopaminergic-, and GABAergic cells in the MB calyces. For the first time, we found evidence for connections between both tracts within the AL.

8.
Curr Biol ; 25(21): 2869-2874, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26592345

RESUMEN

Sleep plays an important role in stabilizing new memory traces after learning [1-3]. Here we investigate whether sleep's role in memory processing is similar in evolutionarily distant species and demonstrate that a context trigger during deep-sleep phases improves memory in invertebrates, as it does in humans. We show that in honeybees (Apis mellifera), exposure to an odor during deep sleep that has been present during learning improves memory performance the following day. Presentation of the context odor during wake phases or novel odors during sleep does not enhance memory. In humans, memory consolidation can be triggered by presentation of a context odor during slow-wave sleep that had been present during learning [3-5]. Our results reveal that deep-sleep phases in honeybees have the potential to prompt memory consolidation, just as they do in humans. This study provides strong evidence for a conserved role of sleep-and how it affects memory processes-from insects to mammals.


Asunto(s)
Abejas/fisiología , Memoria/fisiología , Animales , Abejas/metabolismo , Aprendizaje/fisiología , Odorantes , Sueño/fisiología , Fases del Sueño
9.
J Breath Res ; 9(2): 027103, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25667342

RESUMEN

In vitro cultured lung cancer cell lines were investigated regarding the possible identification of volatile organic compounds as potential biomarkers. Gas samples from the headspace of pure culture medium and from the cultures of human lung adenocarcinoma cell lines A549 and Lu7466 were exposed to polypropylene fleece in order to absorb odour components. Sniffer dogs were trained with loaded fleeces of both cell lines, and honey bees were trained with fleeces exposed to A549. Afterwards, their ability to distinguish between cell-free culture medium odour and lung cancer cell odour was tested. Neither bees nor dogs were able to discriminate between odours from the cancer cell cultures and the pure culture medium. Solid phase micro extraction followed by gas chromatography with mass selective detection produced profiles of volatiles from the headspace offered to the animals. The profiles from the cell lines were largely similar; distinct differences were based on the decrease of volatile culture medium components due to the cells' metabolic activity. In summary, cultured lung cancer cell lines do not produce any biomarkers recognizable by animals or gas chromatographic analysis.


Asunto(s)
Abejas/fisiología , Biomarcadores/análisis , Pruebas Respiratorias/métodos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Animales , Condicionamiento Psicológico , Perros , Cromatografía de Gases y Espectrometría de Masas , Humanos , Odorantes/análisis , Células Tumorales Cultivadas , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...