Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
FASEB J ; 38(1): e23356, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38071470

RESUMEN

The structural basis of the activation and internalization of EGF receptors (EGFR) is still a matter of debate despite the importance of this target in cancer treatment. Whether agonists induce dimer formation or act on preformed dimers remains discussed. Here, we provide direct evidence that EGF-induced EGFR dimer formation as best illustrated by the very large increase in FRET between snap-tagged EGFR subunits induced by agonists. We confirm that Erlotinib-related TK (tyrosine kinase) inhibitors also induce dimer formation despite the inactive state of the binding domain. Surprisingly, TK inhibitors do not inhibit EGF-induced EGFR internalization despite their ability to fully block EGFR signaling. Only Erlotinib-related TK inhibitors promoting asymmetric dimers could slow down this process while the lapatinib-related ones have almost no effect. These results reveal that the conformation of the intracellular TK dimer, rather than the known EGFR signaling, is critical for EGFR internalization. These results also illustrate clear differences in the mode of action of TK inhibitors on the EGFR and open novel possibilities to control EGFR signaling for cancer treatment.


Asunto(s)
Factor de Crecimiento Epidérmico , Receptores ErbB , Clorhidrato de Erlotinib/farmacología , Receptores ErbB/metabolismo , Transducción de Señal , Lapatinib/farmacología , Inhibidores de Proteínas Quinasas/farmacología
2.
Faraday Discuss ; 234(0): 159-174, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35147141

RESUMEN

The relative sensitivities of structurally related Eu(III) complexes to quenching by electron and energy transfer processes have been compared. In two sets of 9-coordinate complexes based on 1,4,7-triazacyclononane, the Eu emission lifetime decreased as the number of conjugated sensitising groups and the number of unbound ligand N atoms increased, consistent with photoinduced electron transfer to the excited Eu(III) ion that is suppressed by N-protonation. Quenching of the Eu 5D0 excited state may also occur by electronic energy transfer, and the quenching of a variety of 9-coordinate complexes by a cyanine dye with optimal spectral overlap occurs by an efficient FRET process, defined by a Förster radius (R0) value of 68 Å and characterised by second rate constants in the order of 109 M-1 s-1; these values were insensitive to changes in the ligand structure and to the overall complex hydrophilicity. Quenching of the Eu and Tb excited states by energy transfer to Mn(II) and Cu(II) aqua ions occurred over much shorter distances, with rate constants of around 106 M-1 s-1, owing to the much lower spectral overlap integral. The calculated R0 values were estimated to be between 2.5 to 4 Å in the former case, suggesting the presence of a Dexter energy transfer mechanism that requires much closer contact, consistent with the enhanced sensitivity of the rate of quenching to the degree of steric shielding of the lanthanide ion provided by the ligand.

3.
Org Biomol Chem ; 20(1): 182-195, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34878481

RESUMEN

In this work, the development of highly luminescent europium(III) complexes in water solution is reported, including their syntheses, analyses of their photophysical properties and applications in bioassays. Three Eu(III) complexes are derived from new ligands based on a tripyridinophane platform. There are four distinct sections in the structure of these ligands: an 18-membered polyaminocarboxylic macrocycle to bind efficiently lanthanide ions in aqueous solutions, three chromophoric subunits (4-(phenylethynyl)pyridine moieties) to effectively sensitize the emission of the metal, two peripheral moieties to solubilise the complex in aqueous media (sulfonate, sulfobetaine or glucose groups) and a free NH2 group available for grafting or bioconjugation. In our synthetic procedure, a pivotal macrocyclic platform is obtained with a high yield in the crucial macrocyclization step due to a metal template ion effect (74% yield). In Tris aqueous buffer (pH 7.4), the Eu(III) complexes show a maximum excitation wavelength at 320 nm, a suitable overall quantum yield (14%), a relatively long lifetime (0.80 ms) and a one-photon brightness in the range of 10 000 M-1 cm-1. Importantly, these photophysical properties are retained at dilute concentrations, even in the presence of a very large excess of potentially competing species, such as EDTA or Mg2+ ions. Furthermore, we report the bioconjugation of a Eu(III) complex labelled by an N-hydroxysuccinimide ester reactive group with an antibody (anti-glutathione-S-transferase) and the successful application of the corresponding antibody conjugate in the detection of GST-biotin in a fluoroimmunoassay. These new complexes provide a solution for high sensitivity in Homogeneous Time-Resolved Fluorescence (HTRF®) bioassays.


Asunto(s)
Biotina/análisis , Complejos de Coordinación/química , Europio/química , Glutatión Transferasa/análisis , Piridinas/química , Biotina/metabolismo , Complejos de Coordinación/síntesis química , Glutatión Transferasa/metabolismo , Mediciones Luminiscentes
4.
Chem Commun (Camb) ; 57(47): 5814-5817, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34002181

RESUMEN

We report the design and evaluation of pH responsive luminescent europium(iii) probes that allow conjugation to targeting vectors to monitor receptor internalisation in cells. The approach adopted here can be used to tag proteins selectively and to monitor uptake into more acidic organelles, thereby enhancing the performance of time-resolved internalisation assays that require pH monitoring in real time.


Asunto(s)
Complejos de Coordinación/química , Europio/química , Receptor del Péptido 1 Similar al Glucagón/análisis , Sustancias Luminiscentes/química , Complejos de Coordinación/síntesis química , Exenatida/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Sustancias Luminiscentes/síntesis química , Mediciones Luminiscentes , Imagen Óptica
5.
Chemistry ; 27(2): 766-777, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33197072

RESUMEN

A set of four luminescent EuIII complexes bearing an extended aryl-alkynylpyridine chromophore has been studied, showing very different pH-dependent behaviour in their absorption and emission spectral response. For two complexes with pKa values of 6.45 and 6.20 in protein-containing solution, the emission lifetime increases very significantly following protonation. By varying the gate time during signal acquisition, the 'switch-on' intensity ratio could be optimised, and enhancement factors of between 250 to 1330 were measured between pH 8 and 4. The best-behaved probe showed no significant emission dependence on the concentration of endogenous cations, reductants, and serum albumin. It was examined in live-cell imaging studies to monitor time-dependent lysosomal acidification, for which the increase in observed image brightness due to acidification was a factor of 50 in NIH-3T3 cells.


Asunto(s)
Europio/química , Luminiscencia , Lisosomas/química , Lisosomas/metabolismo , Células 3T3 , Animales , Supervivencia Celular , Ratones , Albúmina Sérica/química
6.
Inorg Chem ; 59(2): 1496-1512, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31913029

RESUMEN

We report a detailed characterization of Eu3+ and Tb3+ complexes derived from a tripyridinophane macrocycle bearing three acetate side arms (H3tpptac). Tpptac3- displays an overall basicity (∑ log KiH) of 24.5, provides the formation of mononuclear ML species, and shows a good binding affinity for Ln3+ (log KLnL = 17.5-18.7). These complexes are also thermodynamically stable at physiological pH (pEu = 18.6, pTb = 18.0). It should be noted that the pGd value of Gd-tpptac (18.4) is only slightly lower than that of commercially available MRI contrast agents such as Gd-dota (pGd = 19.2). Moreover, a very good selectivity for these ions over the endogenous cations (log KCuL = 14.4, log KZnL = 12.9, and log KCaL = 9.3) is observed. The X-ray structure of the terbium complex shows the metal coordinated by the nine N6O3 donor set of the ligand and one inner-sphere water molecule. DFT calculations result in two Eu-tpptac structures with similar bond energies (ΔE = 0.145 eV): one structure in which the water is coordinated to the metal ion and one structure in which the water molecule is farther away from the ion, bound to the ligand with an OH-π bond. By detailed luminescence experiments, we demonstrate that the europium complex in aqueous solution presents a hydration equilibrium between nine-coordinate, dehydrated [Eu-tpptac]0 and ten-coordinate, monohydrated [Eu-tpptac(H2O)]0 species. A similar trend is observed for the terbium complex. Despite the presence of this hydration equilibrium, the H3tpptac ligand sensitizes Eu3+ and Tb3+ luminescence efficiently in buffered water at physiological pH. Particularly, the terbium complex displays a long excited-state lifetime of 2.24 ms and an overall quantum yield of 33% with a brightness of 3600 M-1 cm-1. Such features of Ln3+ complexes of H3tpptac indicate that this platform appears to be particularly appealing for the further development of luminescent lanthanide labels.

7.
Anal Bioanal Chem ; 412(1): 73-80, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31776644

RESUMEN

Although water has been extensively studied, not all of its unique properties have been fully understood. There is still controversy about the temperature at which hydrogen bonds are broken or weakened, producing the anomalous temperature dependence of many water properties. Different temperatures between 23 and 48 °C have been reported, but no study has scrutinized the reasons for this discrepancy. We suggest the determining role of pH in the alteration of the water anomaly temperature. We employed a luminescent europium trisbipyridine cryptate, which is highly sensitive to changes in the arrangement of water molecules and whose luminescence intensity and lifetime are not significantly influenced by variations over a broad pH range. Our results revealed an increase of the crossover temperature from circa 35 °C at pH 3.5 to circa 45 °C at pH 7 to 9, which explains the discrepancies of previous studies. The pH dependence of water anomaly temperature is an important property for a better understanding of water and water-based systems and applications.

8.
Angew Chem Int Ed Engl ; 57(41): 13686-13690, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30084526

RESUMEN

Fluorescence barcoding based on nanoparticles provides many advantages for multiparameter imaging. However, creating different concentration-independent codes without mixing various nanoparticles and by using single-wavelength excitation and emission for multiplexed cellular imaging is extremely challenging. Herein, we report the development of quantum dots (QDs) with two different SiO2 shell thicknesses (6 and 12 nm) that are coated with two different lanthanide complexes (Tb and Eu). FRET from the Tb or Eu donors to the QD acceptors resulted in four distinct photoluminescence (PL) decays, which were encoded by simple time-gated (TG) PL intensity detection in three individual temporal detection windows. The well-defined single-nanoparticle codes were used for live cell imaging and a one-measurement distinction of four different cells in a single field of view. This single-color barcoding strategy opens new opportunities for multiplexed labeling and tracking of cells.


Asunto(s)
Europio/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Nanopartículas , Puntos Cuánticos , Terbio/química
9.
Sci Rep ; 8(1): 10414, 2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29991736

RESUMEN

G protein coupled receptors (GPCRs) play essential roles in intercellular communication. Although reported two decades ago, the assembly of GPCRs into dimer and larger oligomers in their native environment is still a matter of intense debate. Here, using number and brightness analysis of fluorescently labeled receptors in cultured hippocampal neurons, we confirm that the metabotropic glutamate receptor type 2 (mGlu2) is a homodimer at expression levels in the physiological range, while heterodimeric GABAB receptors form larger complexes. Surprisingly, we observed the formation of larger mGlu2 oligomers upon both activation and inhibition of the receptor. Stabilizing the receptor in its inactive conformation using biochemical constraints also led to the observation of oligomers. Following our recent observation that mGlu receptors are in constant and rapid equilibrium between several states under basal conditions, we propose that this structural heterogeneity limits receptor oligomerization. Such assemblies are expected to stabilize either the active or the inactive state of the receptor.


Asunto(s)
Neuronas/química , Conformación Proteica , Receptores Acoplados a Proteínas G/química , Receptores de GABA-B/química , Hipocampo/química , Hipocampo/metabolismo , Humanos , Neuronas/metabolismo , Multimerización de Proteína/genética , Receptores Acoplados a Proteínas G/genética , Receptores de GABA-B/metabolismo , Transducción de Señal
10.
Elife ; 62017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28661401

RESUMEN

Metabotropic glutamate receptors (mGluRs) are mandatory dimers playing important roles in regulating CNS function. Although assumed to form exclusive homodimers, 16 possible heterodimeric mGluRs have been proposed but their existence in native cells remains elusive. Here, we set up two assays to specifically identify the pharmacological properties of rat mGlu heterodimers composed of mGlu2 and 4 subunits. We used either a heterodimer-specific conformational LRET-based biosensor or a system that guarantees the cell surface targeting of the heterodimer only. We identified mGlu2-4 specific pharmacological fingerprints that were also observed in a neuronal cell line and in lateral perforant path terminals naturally expressing mGlu2 and mGlu4. These results bring strong evidence for the existence of mGlu2-4 heterodimers in native cells. In addition to reporting a general approach to characterize heterodimeric mGluRs, our study opens new avenues to understanding the pathophysiological roles of mGlu heterodimers.


Asunto(s)
Compuestos Bicíclicos con Puentes/farmacología , Embrión de Mamíferos/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Multimerización de Proteína/efectos de los fármacos , Receptores de Glutamato Metabotrópico/química , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Células HEK293 , Hipocampo/citología , Hipocampo/efectos de los fármacos , Humanos , Neuronas/citología , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/metabolismo
11.
Cell Chem Biol ; 24(3): 360-370, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28286129

RESUMEN

The main inhibitory neurotransmitter, γ-aminobutyric acid (GABA), modulates many synapses by activating the G protein-coupled receptor GABAB, which is a target for various therapeutic applications. It is an obligatory heterodimer made of GB1 and GB2 that can be regulated by positive allosteric modulators (PAMs). The molecular mechanism of activation of the GABAB receptor remains poorly understood. Here, we have developed FRET-based conformational GABAB sensors compatible with high-throughput screening. We identified conformational changes occurring within the extracellular and transmembrane domains upon receptor activation, which are smaller than those observed in the related metabotropic glutamate receptors. These sensors also allow discrimination between agonists of different efficacies and between PAMs that have different modes of action, which has not always been possible using conventional functional assays. Our study brings important new information on the activation mechanism of the GABAB receptor and should facilitate the screening and identification of new chemicals targeting this receptor.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Receptores de GABA-B/metabolismo , Regulación Alostérica , Calcio/análisis , Calcio/metabolismo , Agonistas de Receptores GABA-B/química , Agonistas de Receptores GABA-B/metabolismo , Antagonistas de Receptores de GABA-B/química , Antagonistas de Receptores de GABA-B/metabolismo , Células HEK293 , Humanos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Receptores de GABA-B/química , Ácido gamma-Aminobutírico/química , Ácido gamma-Aminobutírico/metabolismo
12.
Nat Chem Biol ; 13(4): 372-380, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28135236

RESUMEN

Cell surface receptors represent a vast majority of drug targets. Efforts have been conducted to develop biosensors reporting their conformational changes in live cells for pharmacological and functional studies. Although Förster resonance energy transfer (FRET) appears to be an ideal approach, its use is limited by the low signal-to-noise ratio. Here we report a toolbox composed of a combination of labeling technologies, specific fluorophores compatible with time-resolved FRET and a novel method to quantify signals. This approach enables the development of receptor biosensors with a large signal-to-noise ratio. We illustrate the usefulness of this toolbox through the development of biosensors for various G-protein-coupled receptors and receptor tyrosine kinases. These receptors include mGlu, GABAB, LH, PTH, EGF and insulin receptors among others. These biosensors can be used for high-throughput studies and also revealed new information on the activation process of these receptors in their cellular environment.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células HEK293 , Humanos , Ratas
13.
Artículo en Inglés | MEDLINE | ID: mdl-26617570

RESUMEN

Although G protein-coupled receptor (GPCR) internalization has long been considered as a major aspect of the desensitization process that tunes ligand responsiveness, internalization is also involved in receptor resensitization and signaling, as well as the ligand scavenging function of some atypical receptors. Internalization thus contributes to the diversity of GPCR-dependent signaling, and its dynamics and quantification in living cells has generated considerable interest. We developed a robust and sensitive assay to follow and quantify ligand-induced and constitutive-induced GPCR internalization but also receptor recycling in living cells. This assay is based on diffusion-enhanced resonance energy transfer (DERET) between cell surface GPCRs labeled with a luminescent terbium cryptate donor and a fluorescein acceptor present in the culture medium. GPCR internalization results in a quantifiable reduction of energy transfer. This method yields a high signal-to-noise ratio due to time-resolved measurements. For various GPCRs belonging to different classes, we demonstrated that constitutive and ligand-induced internalization could be monitored as a function of time and ligand concentration, thus allowing accurate quantitative determination of kinetics of receptor internalization but also half-maximal effective or inhibitory concentrations of compounds. In addition to its selectivity and sensitivity, we provided evidence that DERET-based internalization assay is particularly suitable for characterizing biased ligands. Furthermore, the determination of a Z'-factor value of 0.45 indicates the quality and suitability of DERET-based internalization assay for high-throughput screening (HTS) of compounds that may modulate GPCRs internalization.

14.
FASEB J ; 29(6): 2235-46, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25690655

RESUMEN

Identifying the interacting partners and the dynamics of the molecular networks constitutes the key point in understanding cellular processes. Different methods often based on energy transfer strategies have been developed to examine the molecular dynamics of protein complexes. However, these methods suffer a couple of drawbacks: a single complex can be studied at a time, and its localization and tracking cannot generally be investigated. Here, we report a multicolor time-resolved Förster resonance energy transfer microscopy method that allows the identification of up to 3 different complexes simultaneously, their localization in cells, and their tracking after activation. Using this technique, we studied GPCR oligomerization and internalization in human embryonic kidney 293 cells. We definitively show that receptors can internalize as oligomers and that receptor coexpression deeply impacts oligomer internalization processes.


Asunto(s)
Endocitosis , Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Fluorescente/métodos , Multimerización de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Transferencia Resonante de Energía de Fluorescencia/instrumentación , Células HEK293 , Humanos , Microscopía Fluorescente/instrumentación , Receptores de Vasopresinas/agonistas , Receptores de Vasopresinas/química , Receptores de Vasopresinas/metabolismo , Reproducibilidad de los Resultados , Imagen de Lapso de Tiempo/instrumentación , Imagen de Lapso de Tiempo/métodos
15.
Methods Mol Biol ; 1272: 23-36, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25563174

RESUMEN

Screening chemical libraries to find specific drugs for G protein-coupled receptors is still of major interest. Indeed, because of their major roles in all physiological functions, G protein-coupled receptors remain major targets for drug development programs. Currently, interest in GPCRs as drug targets has been boosted by the discovery of biased ligands, thus allowing the development of drugs not only specific for one target but also for the specific signaling cascade expected to have the therapeutic effect. Such molecules are then expected to display fewer side effects. To reach such a goal, there is much interest in novel, efficient, simple, and direct screening assays that may help identify any drugs interacting with the target, these being then analyzed for their biased activity. Here, we present an efficient strategy to screen ligands on their binding properties. The method described is based on time-resolved FRET between a receptor and a ligand. This method has already been used to develop new assays called Tag-lite(®) binding assays for numerous G protein-coupled receptors, proving its broad application and its power.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Coloración y Etiquetado/métodos , Sitios de Unión , Complejos de Coordinación/química , Diseño de Fármacos , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes/química , Expresión Génica , Guanidinas/química , Células HEK293 , Humanos , Cinética , Ligandos , O(6)-Metilguanina-ADN Metiltransferasa/química , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Unión Proteica , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Bibliotecas de Moléculas Pequeñas/química , Terbio/química
16.
Dalton Trans ; 44(11): 4791-803, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25341077

RESUMEN

The development of the brightest luminescent europium(iii) complexes is traced, including analysis of the C3-symmetric core complex based on a functionalized triazacyclononane and identification of the most suitable strongly absorbing chromophore. Strategies for the synthesis of the complexes, including enantiopure analogues, are outlined and opportunities for applications in time-resolved microscopy and spectral imaging emphasised. Practicable examples are introduced, including selective organelle staining for cellular optical imaging at 65 nm resolution and the development of new bioassays using time-resolved FRET methods.


Asunto(s)
Bioensayo/métodos , Colorantes/síntesis química , Europio/química , Imagen Óptica/métodos , Compuestos Organometálicos/síntesis química , Animales , Técnicas de Química Sintética , Colorantes/química , Colorantes/metabolismo , Humanos , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo
17.
Nat Commun ; 5: 5206, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25323157

RESUMEN

Efficient cell-to-cell communication relies on the accurate signalling of cell surface receptors. Understanding the molecular bases of their activation requires the characterization of the dynamic equilibrium between active and resting states. Here, we monitor, using single-molecule Förster resonance energy transfer, the kinetics of the reorientation of the extracellular ligand-binding domain of the metabotropic glutamate receptor (mGluR), a class C G-protein-coupled receptor. We demonstrate that most receptors oscillate between a resting- and an active-conformation on a sub-millisecond timescale. Interestingly, we demonstrate that differences in agonist efficacies stem from differing abilities to shift the conformational equilibrium towards the fully active state, rather than from the stabilization of alternative static conformations, which further highlights the dynamic nature of mGluRs and revises our understanding of receptor activation and allosteric modulation.


Asunto(s)
Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Sitio Alostérico , Dominio Catalítico , Comunicación Celular , Transferencia Resonante de Energía de Fluorescencia , Guanidinas/química , Células HEK293 , Humanos , Cinética , Ligandos , Conformación Molecular , Mutación , Fotones , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Transducción de Señal
18.
Angew Chem Int Ed Engl ; 53(40): 10718-22, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25115848

RESUMEN

Luminescent europium complexes are used in a broad range of applications as a result of their particular emissive properties. The synthesis and application of bright, highly water-soluble, and negatively charged sulfonic- or carboxylic acid derivatives of para-substituted aryl-alkynyl triazacyclononane complexes are described. Introduction of the charged solubilizing moieties suppresses cellular uptake or adsorption to living cells making them applicable for labeling and performing assays on membrane receptors. These europium complexes are applied to monitor fluorescent ligand binding on cell-surface proteins with time-resolved Förster resonance energy transfer (TR-FRET) assays in plate-based format and using TR-FRET microscopy.


Asunto(s)
Compuestos Aza/análisis , Complejos de Coordinación/análisis , Europio/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Sustancias Luminiscentes/análisis , Microscopía/métodos , Piperidinas/análisis , Receptores Acoplados a Proteínas G/metabolismo , Compuestos Aza/metabolismo , Complejos de Coordinación/metabolismo , Europio/metabolismo , Células HEK293 , Humanos , Ligandos , Sustancias Luminiscentes/metabolismo , Piperidinas/metabolismo , Unión Proteica , Receptores Acoplados a Proteínas G/análisis , Solubilidad , Agua/química
19.
Chemistry ; 20(28): 8636-46, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24938657

RESUMEN

A series of europium and terbium complexes based on a functionalized triazacyclononane carboxylate or phosphinate macrocyclic ligand is described. The influence of the anionic group, that is, carboxylate, methylphosphinate, or phenylphosphinate, on the photophysical properties was studied and rationalized on the basis of DFT calculated structures. The nature, number, and position of electron-donating or electron-withdrawing aryl substituents were varied systematically within the same phenylethynyl scaffold in order to optimize the brightness of the corresponding europium complexes and investigate their two-photon absorption properties. Finally, the europium complexes were examined in cell-imaging applications, and selected terbium complexes were studied as potential oxygen sensors.


Asunto(s)
Alquinos/química , Compuestos Aza/química , Europio/química , Compuestos Organometálicos/química , Piperidinas/química , Terbio/química , Ligandos , Estructura Molecular
20.
Inorg Chem ; 53(4): 1854-66, 2014 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-24392868

RESUMEN

The design and application of luminescent lanthanide cryptates for sensing biological interactions is highlighted through the review of the work performed in our laboratory and with academic collaborations. The path from the initial applications probing biochemical interaction in vitro to "state-of-the-art" cellular assays toward clinical applications using homogeneous time-resolved fluorescence technology is described. An overview of the luminescent lanthanide macrocyclic compounds developed at Cisbio in the recent past is given with an emphasis on specific constraints required by specific applications. Recent assays for drug-discovery and diagnostic purposes using both antibody-based and suicide-enzyme-based technology are illustrated. New perspectives in the field of molecular medicine and time-resolved microscopy are discussed.


Asunto(s)
Éteres Corona/química , Descubrimiento de Drogas , Elementos de la Serie de los Lantanoides/química , Sustancias Luminiscentes/química , Medicina Molecular/tendencias , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA