Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 36(3): 109406, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34289370

RESUMEN

Adaptation to changing environments and immune evasion is pivotal for fitness of pathogens. Yet, the underlying mechanisms remain largely unknown. Adaptation is governed by dynamic transcriptional re-programming, which is tightly connected to chromatin architecture. Here, we report a pivotal role for the HIR histone chaperone complex in modulating virulence of the human fungal pathogen Candida albicans. Genetic ablation of HIR function alters chromatin accessibility linked to aberrant transcriptional responses to protein as nitrogen source. This accelerates metabolic adaptation and increases the release of extracellular proteases, which enables scavenging of alternative nitrogen sources. Furthermore, HIR controls fungal virulence, as HIR1 deletion leads to differential recognition by immune cells and hypervirulence in a mouse model of systemic infection. This work provides mechanistic insights into chromatin-coupled regulatory mechanisms that fine-tune pathogen gene expression and virulence. Furthermore, the data point toward the requirement of refined screening approaches to exploit chromatin modifications as antifungal strategies.


Asunto(s)
Candida albicans/metabolismo , Candida albicans/patogenicidad , Cromatina/metabolismo , Proteínas Fúngicas/metabolismo , Chaperonas de Histonas/metabolismo , Nitrógeno/metabolismo , Adaptación Fisiológica/genética , Animales , Candida albicans/genética , Candidiasis/microbiología , Candidiasis/patología , Eliminación de Gen , Sitios Genéticos , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones Endogámicos C57BL , Proteolisis , Transcripción Genética , Virulencia
2.
Sci Rep ; 9(1): 9445, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31263212

RESUMEN

Fungal virulence is regulated by a tight interplay of transcriptional control and chromatin remodelling. Despite compelling evidence that lysine acetylation modulates virulence of pathogenic fungi such as Candida albicans, the underlying mechanisms have remained largely unexplored. We report here that Gcn5, a paradigm lysyl-acetyl transferase (KAT) modifying both histone and non-histone targets, controls fungal morphogenesis - a key virulence factor of C. albicans. Our data show that genetic removal of GCN5 abrogates fungal virulence in mice, suggesting strongly diminished fungal fitness in vivo. This may at least in part arise from increased susceptibility to killing by macrophages, as well as by other phagocytes such as neutrophils or monocytes. Loss of GCN5 also causes hypersensitivity to the fungicidal drug caspofungin. Caspofungin hypersusceptibility requires the master regulator Efg1, working in concert with Gcn5. Moreover, Gcn5 regulates multiple independent pathways, including adhesion, cell wall-mediated MAP kinase signaling, hypersensitivity to host-derived oxidative stress, and regulation of the Fks1 glucan synthase, all of which play critical roles in virulence and antifungal susceptibility. Hence, Gcn5 regulates fungal virulence through multiple mechanisms, suggesting that specific inhibition of Gcn5 could offer new therapeutic strategies to combat invasive fungal infections.


Asunto(s)
Candida albicans/enzimología , Proteínas Fúngicas/metabolismo , Histona Acetiltransferasas/metabolismo , Virulencia , Animales , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Candidiasis/microbiología , Candidiasis/patología , Candidiasis/veterinaria , Caspofungina/farmacología , Adhesión Celular/genética , Pared Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Humanos , Sistema de Señalización de MAP Quinasas , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Fagocitosis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Nat Med ; 22(8): 915-23, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27428901

RESUMEN

Fungal infections claim an estimated 1.5 million lives each year. Mechanisms that protect from fungal infections are still elusive. Recognition of fungal pathogens relies on C-type lectin receptors (CLRs) and their downstream signaling kinase SYK. Here we report that the E3 ubiquitin ligase CBLB controls proximal CLR signaling in macrophages and dendritic cells. We show that CBLB associates with SYK and ubiquitinates SYK, dectin-1, and dectin-2 after fungal recognition. Functionally, CBLB deficiency results in increased inflammasome activation, enhanced reactive oxygen species production, and increased fungal killing. Genetic deletion of Cblb protects mice from morbidity caused by cutaneous infection and markedly improves survival after a lethal systemic infection with Candida albicans. On the basis of these findings, we engineered a cell-permeable CBLB inhibitory peptide that protects mice from lethal C. albicans infections. We thus describe a key role for Cblb in the regulation of innate antifungal immunity and establish a novel paradigm for the treatment of fungal sepsis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Candidiasis Invasiva/inmunología , Células Dendríticas/inmunología , Lectinas Tipo C/metabolismo , Macrófagos/inmunología , Péptidos/farmacología , Fagocitosis/inmunología , Proteínas Proto-Oncogénicas c-cbl/inmunología , Especies Reactivas de Oxígeno/inmunología , Sepsis/inmunología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Western Blotting , Candida albicans , Caspasa 8 , Citocinas/inmunología , Células Dendríticas/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Inmunoprecipitación , Riñón , Lectinas Tipo C/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Ratones Noqueados , Monocitos/efectos de los fármacos , Monocitos/inmunología , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Fagocitosis/efectos de los fármacos , Fagocitosis/genética , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas c-cbl/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-cbl/genética , Ubiquitinación
4.
PLoS Pathog ; 11(10): e1005218, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26473952

RESUMEN

Human fungal pathogens like Candida albicans respond to host immune surveillance by rapidly adapting their transcriptional programs. Chromatin assembly factors are involved in the regulation of stress genes by modulating the histone density at these loci. Here, we report a novel role for the chromatin assembly-associated histone acetyltransferase complex NuB4 in regulating oxidative stress resistance, antifungal drug tolerance and virulence in C. albicans. Strikingly, depletion of the NuB4 catalytic subunit, the histone acetyltransferase Hat1, markedly increases resistance to oxidative stress and tolerance to azole antifungals. Hydrogen peroxide resistance in cells lacking Hat1 results from higher induction rates of oxidative stress gene expression, accompanied by reduced histone density as well as subsequent increased RNA polymerase recruitment. Furthermore, hat1Δ/Δ cells, despite showing growth defects in vitro, display reduced susceptibility to reactive oxygen-mediated killing by innate immune cells. Thus, clearance from infected mice is delayed although cells lacking Hat1 are severely compromised in killing the host. Interestingly, increased oxidative stress resistance and azole tolerance are phenocopied by the loss of histone chaperone complexes CAF-1 and HIR, respectively, suggesting a central role for NuB4 in the delivery of histones destined for chromatin assembly via distinct pathways. Remarkably, the oxidative stress phenotype of hat1Δ/Δ cells is a species-specific trait only found in C. albicans and members of the CTG clade. The reduced azole susceptibility appears to be conserved in a wider range of fungi. Thus, our work demonstrates how highly conserved chromatin assembly pathways can acquire new functions in pathogenic fungi during coevolution with the host.


Asunto(s)
Adaptación Fisiológica/fisiología , Candida albicans/patogenicidad , Candidiasis/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Histona Acetiltransferasas/metabolismo , Estrés Oxidativo , Animales , Candida albicans/enzimología , Inmunoprecipitación de Cromatina , Immunoblotting , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Virulencia
5.
PLoS Pathog ; 10(12): e1004525, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474208

RESUMEN

Tec family kinases are intracellular non-receptor tyrosine kinases implicated in numerous functions, including T cell and B cell regulation. However, a role in microbial pathogenesis has not been described. Here, we identified Tec kinase as a novel key mediator of the inflammatory immune response in macrophages invaded by the human fungal pathogen C. albicans. Tec is required for both activation and assembly of the noncanonical caspase-8, but not of the caspase-1 inflammasome, during infections with fungal but not bacterial pathogens, triggering the antifungal response through IL-1ß. Furthermore, we identify dectin-1 as the pathogen recognition receptor being required for Syk-dependent Tec activation. Hence, Tec is a novel innate-specific inflammatory kinase, whose genetic ablation or inhibition by small molecule drugs strongly protects mice from fungal sepsis. These data demonstrate a therapeutic potential for Tec kinase inhibition to combat invasive microbial infections by attenuating the host inflammatory response.


Asunto(s)
Caspasa 8/inmunología , Inflamasomas/inmunología , Proteínas Tirosina Quinasas/inmunología , Animales , Caspasa 8/genética , Activación Enzimática/genética , Activación Enzimática/inmunología , Humanos , Inflamasomas/genética , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Ratones , Ratones Noqueados , Micosis/genética , Micosis/inmunología , Proteínas Tirosina Quinasas/genética , Sepsis/genética , Sepsis/inmunología , Quinasa Syk
6.
Nat Genet ; 46(9): 1028-33, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25129145

RESUMEN

Neutrophils are key innate immune effector cells that are essential to fighting bacterial and fungal pathogens. Here we report that mice carrying a hematopoietic lineage-specific deletion of Jagn1 (encoding Jagunal homolog 1) cannot mount an efficient neutrophil-dependent immune response to the human fungal pathogen Candida albicans. Global glycobiome analysis identified marked alterations in the glycosylation of proteins involved in cell adhesion and cytotoxicity in Jagn1-deficient neutrophils. Functional analysis confirmed marked defects in neutrophil migration in response to Candida albicans infection and impaired formation of cytotoxic granules, as well as defective myeloperoxidase release and killing of Candida albicans. Treatment with granulocyte/macrophage colony-stimulating factor (GM-CSF) protected mutant mice from increased weight loss and accelerated mortality after Candida albicans challenge. Notably, GM-CSF also restored the defective fungicidal activity of bone marrow cells from humans with JAGN1 mutations. These data directly identify Jagn1 (JAGN1 in humans) as a new regulator of neutrophil function in microbial pathogenesis and uncover a potential treatment option for humans.


Asunto(s)
Candidiasis/inmunología , Proteínas de la Membrana/inmunología , Neutrófilos/inmunología , Animales , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/microbiología , Candida albicans , Candidiasis/tratamiento farmacológico , Candidiasis/metabolismo , Candidiasis/microbiología , Glicosilación , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Neutrófilos/microbiología
7.
PLoS Pathog ; 8(7): e1002811, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22911155

RESUMEN

Invasive fungal infections by Candida albicans (Ca) are a frequent cause of lethal sepsis in intensive care unit patients. While a contribution of type I interferons (IFNs-I) in fungal sepsis remains unknown, these immunostimulatory cytokines mediate the lethal effects of endotoxemia and bacterial sepsis. Using a mouse model lacking a functional IFN-I receptor (Ifnar1⁻/⁻), we demonstrate a remarkable protection against invasive Ca infections. We discover a mechanism whereby IFN-I signaling controls the recruitment of inflammatory myeloid cells, including Ly6C(hi) monocytes and neutrophils, to infected kidneys by driving expression of the chemokines CCL2 and KC. Within kidneys, monocytes differentiate into inflammatory DCs but fail to functionally mature in Ifnar1⁻/⁻ mice, as demonstrated by the impaired upregulation of the key activation markers PDCA1 and iNOS. The increased activity of inflammatory monocytes and neutrophils results in hyper-inflammation and lethal kidney pathology. Pharmacological diminution of monocytes and neutrophils by treating mice with pioglitazone, a synthetic agonist of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPAR-γ), strongly reduces renal immunopathology during Ca infection and improves mouse survival. Taken together, our data connect for the first time the sepsis-promoting functions of IFNs-I to the CCL2-mediated recruitment and the activation of inflammatory monocytes/DCs with high host-destructing potency. Moreover, our data demonstrate a therapeutic relevance of PPAR-γ agonists for microbial infectious diseases where inflammatory myeloid cells may contribute to fatal tissue damage.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Interferón Tipo I/metabolismo , Monocitos/inmunología , Neutrófilos/inmunología , Animales , Antígenos CD/biosíntesis , Antígenos Ly/biosíntesis , Candidemia/mortalidad , Candidiasis/patología , Quimiocina CCL2/biosíntesis , Quimiocina CXCL1/biosíntesis , Células Dendríticas/inmunología , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Riñón/inmunología , Riñón/microbiología , Masculino , Glicoproteínas de Membrana/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/biosíntesis , PPAR gamma/agonistas , Pioglitazona , Receptores de Interferón/deficiencia , Receptores de Interferón/genética , Transducción de Señal/genética , Tiazolidinedionas/farmacología , Tiazolidinedionas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...