Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294503

RESUMEN

Activity-dependent protein synthesis is crucial for long-lasting forms of synaptic plasticity. However, our understanding of translational mechanisms controlling GABAergic synapses is limited. One distinct form of inhibitory long-term potentiation (iLTP) enhances postsynaptic clusters of GABAARs and the primary inhibitory scaffold, gephyrin, to promote sustained synaptic strengthening. While we previously found that persistent iLTP requires mRNA translation, the mechanisms controlling plasticity-induced gephyrin translation remain unknown. We identify miR153 as a novel regulator of Gphn mRNA translation which controls gephyrin protein levels and synaptic clustering, ultimately impacting inhibitory synaptic structure and function. iLTP induction downregulates miR153, reversing its translational suppression of Gphn mRNA and promoting de novo gephyrin protein synthesis and synaptic clustering during iLTP. Finally, we find that reduced miR153 expression during iLTP is driven by an excitation-transcription coupling pathway involving calcineurin, NFAT and HDACs, which also controls the miRNA-dependent upregulation of GABAARs. Together, we delineate a miRNA-dependent post-transcriptional mechanism that controls the expression of the key synaptic scaffold, gephyrin, and may converge with parallel miRNA pathways to coordinate gene upregulation to maintain inhibitory synaptic plasticity.

2.
bioRxiv ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38168421

RESUMEN

Activity-dependent protein synthesis is crucial for many long-lasting forms of synaptic plasticity. However, our understanding of the translational mechanisms controlling inhibitory synapses is limited. One distinct form of inhibitory long-term potentiation (iLTP) enhances postsynaptic clusters of GABAARs and the primary inhibitory scaffold, gephyrin, to promote sustained synaptic strengthening. While we previously found that persistent iLTP requires mRNA translation, the precise mechanisms controlling gephyrin translation during this process remain unknown. Here, we identify miR153 as a novel regulator of Gphn mRNA translation which controls gephyrin protein levels and synaptic clustering, ultimately impacting GABAergic synaptic structure and function. We find that iLTP induction downregulates miR153, reversing its translational suppression of Gphn mRNA and allowing for increased de novo gephyrin protein synthesis and synaptic clustering during iLTP. Finally, we find that reduced miR153 expression during iLTP is driven by an excitation-transcription coupling pathway involving calcineurin, NFAT and HDACs, which also controls the miRNA-dependent upregulation of GABAARs. Overall, this work delineates a miRNA-dependent post-transcriptional mechanism that controls the expression of the key synaptic scaffold, gephyrin, and may converge with parallel miRNA pathways to coordinate gene upregulation to maintain inhibitory synaptic plasticity.

3.
Cell Rep ; 39(7): 110823, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584679

RESUMEN

Substantia nigra pars compacta (SNc) dopamine neurons play a key role in regulating the activity of striatal circuits within the basal ganglia. In addition to dopamine, these neurons release several other transmitters, including the major inhibitory neurotransmitter γ-aminobutyric acid (GABA). Both dopamine and GABA are loaded into SNc synaptic vesicles by the vesicular monoamine transporter 2 (VMAT2), and co-release of GABA provides strong inhibition to the striatum by directly inhibiting striatal medium spiny projection neurons (MSNs) through activation of GABAA receptors. Here, we found that despite both dopamine and GABA being co-packaged by VMAT2, the properties of transmission, including Ca2+ sensitivity, release probability, and requirement of active zone scaffolding proteins, differ between the two transmitters. Moreover, the extent by which presynaptic neuromodulators inhibit co-transmission also varied. Differences in modulation and the mechanisms controlling release allow for independent regulation of dopamine and GABA signals despite both being loaded via similar mechanisms.


Asunto(s)
Cuerpo Estriado , Dopamina , Ganglios Basales/metabolismo , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Sustancia Negra/metabolismo , Ácido gamma-Aminobutírico/metabolismo
4.
Trends Pharmacol Sci ; 41(4): 230-232, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964511

RESUMEN

To investigate how opioid exposure alters dopamine (DA) responses in medium spiny neurons (MSNs), Muntean et al. used a novel cAMP sensor to track cAMP dynamics and report a coordinated effort of adaptations in D1- and D2-MSNs to integrate DA inputs and shift signaling strengths in various states of opioid dependence.


Asunto(s)
Núcleo Accumbens , Receptores de Dopamina D1 , Analgésicos Opioides , Cuerpo Estriado/metabolismo , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...