Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuroinformatics ; 21(2): 457-468, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36622500

RESUMEN

Current PET datasets are becoming larger, thereby increasing the demand for fast and reproducible processing pipelines. This paper presents a freely available, open source, Python-based software package called NiftyPAD, for versatile analyses of static, full or dual-time window dynamic brain PET data. The key novelties of NiftyPAD are the analyses of dual-time window scans with reference input processing, pharmacokinetic modelling with shortened PET acquisitions through the incorporation of arterial spin labelling (ASL)-derived relative perfusion measures, as well as optional PET data-based motion correction. Results obtained with NiftyPAD were compared with the well-established software packages PPET and QModeling for a range of kinetic models. Clinical data from eight subjects scanned with four different amyloid tracers were used to validate the computational performance. NiftyPAD achieved [Formula: see text] correlation with PPET, with absolute difference [Formula: see text] for linearised Logan and MRTM2 methods, and [Formula: see text] correlation with QModeling, with absolute difference [Formula: see text] for basis function based SRTM and SRTM2 models. For the recently published SRTM ASL method, which is unavailable in existing software packages, high correlations with negligible bias were observed with the full scan SRTM in terms of non-displaceable binding potential ([Formula: see text]), indicating reliable model implementation in NiftyPAD. Together, these findings illustrate that NiftyPAD is versatile, flexible, and produces comparable results with established software packages for quantification of dynamic PET data. It is freely available ( https://github.com/AMYPAD/NiftyPAD ), and allows for multi-platform usage. The modular setup makes adding new functionalities easy, and the package is lightweight with minimal dependencies, making it easy to use and integrate into existing processing pipelines.


Asunto(s)
Encéfalo , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen
2.
Med Phys ; 49(5): 3298-3313, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35271742

RESUMEN

PURPOSE: A novel phantom-imaging platform, a set of software tools, for automated and high-precision imaging of the American College of Radiology (ACR) positron emission tomography (PET) phantom for PET/magnetic resonance (PET/MR) and PET/computed tomography (PET/CT) systems is proposed. METHODS: The key feature of this platform is the vector graphics design that facilitates the automated measurement of the knife-edge response function and hence image resolution, using composite volume of interest templates in a 0.5 mm resolution grid applied to all inserts of the phantom. Furthermore, the proposed platform enables the generation of an accurate µ $\mu$ -map for PET/MR systems with a robust alignment based on two-stage image registration using specifically designed PET templates. The proposed platform is based on the open-source NiftyPET software package used to generate multiple list-mode data bootstrap realizations and image reconstructions to determine the precision of the two-stage registration and any image-derived statistics. For all the analyses, iterative image reconstruction was employed with and without modeled shift-invariant point spread function and with varying iterations of the ordered subsets expectation maximization (OSEM) algorithm. The impact of the activity outside the field of view (FOV) was assessed using two acquisitions of 30 min each, with and without the activity outside the FOV. RESULTS: The utility of the platform has been demonstrated by providing a standard and an advanced phantom analysis including the estimation of spatial resolution using all cylindrical inserts. In the imaging planes close to the edge of the axial FOV, we observed deterioration in the quantitative accuracy, reduced resolution (FWHM increased by 1-2 mm), reduced contrast, and background uniformity due to the activity outside the FOV. Although it slows convergence, the PSF reconstruction had a positive impact on resolution and contrast recovery, but the degree of improvement depended on the regions. The uncertainty analysis based on bootstrap resampling of raw PET data indicated high precision of the two-stage registration. CONCLUSIONS: We demonstrated that phantom imaging using the proposed methodology with the metric of spatial resolution and multiple bootstrap realizations may be helpful in more accurate evaluation of PET systems as well as in facilitating fine tuning for optimal imaging parameters in PET/MR and PET/CT clinical research studies.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Tomografía de Emisión de Positrones/métodos , Programas Informáticos
3.
Philos Trans A Math Phys Eng Sci ; 379(2204): 20200208, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34218674

RESUMEN

SIRF is a powerful PET/MR image reconstruction research tool for processing data and developing new algorithms. In this research, new developments to SIRF are presented, with focus on motion estimation and correction. SIRF's recent inclusion of the adjoint of the resampling operator allows gradient propagation through resampling, enabling the MCIR technique. Another enhancement enabled registering and resampling of complex images, suitable for MRI. Furthermore, SIRF's integration with the optimization library CIL enables the use of novel algorithms. Finally, SPM is now supported, in addition to NiftyReg, for registration. Results of MR and PET MCIR reconstructions are presented, using FISTA and PDHG, respectively. These demonstrate the advantages of incorporating motion correction and variational and structural priors. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.


Asunto(s)
Algoritmos , Interpretación de Imagen Asistida por Computador/estadística & datos numéricos , Imagen por Resonancia Magnética/estadística & datos numéricos , Imagen Multimodal/estadística & datos numéricos , Tomografía de Emisión de Positrones/estadística & datos numéricos , Artefactos , Humanos , Imagenología Tridimensional/estadística & datos numéricos , Movimiento (Física) , Respiración , Programas Informáticos
4.
IEEE Trans Radiat Plasma Med Sci ; 5(2): 202-212, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33681546

RESUMEN

Noise suppression is particularly important in low count positron emission tomography (PET) imaging. Post-smoothing (PS) and regularization methods which aim to reduce noise also tend to reduce resolution and introduce bias. Alternatively, anatomical information from another modality such as magnetic resonance (MR) imaging can be used to improve image quality. Convolutional neural networks (CNNs) are particularly well suited to such joint image processing, but usually require large amounts of training data and have mostly been applied outside the field of medical imaging or focus on classification and segmentation, leaving PET image quality improvement relatively understudied. This article proposes the use of a relatively low-complexity CNN (micro-net) as a post-reconstruction MR-guided image processing step to reduce noise and reconstruction artefacts while also improving resolution in low count PET scans. The CNN is designed to be fully 3-D, robust to very limited amounts of training data, and to accept multiple inputs (including competitive denoising methods). Application of the proposed CNN on simulated low (30 M) count data (trained to produce standard (300 M) count reconstructions) results in a 36% lower normalized root mean squared error (NRMSE, calculated over ten realizations against the ground truth) compared to maximum-likelihood expectation maximization (MLEM) used in clinical practice. In contrast, a decrease of only 25% in NRMSE is obtained when an optimized (using knowledge of the ground truth) PS is performed. A 26% NRMSE decrease is obtained with both RM and optimized PS. Similar improvement is also observed for low count real patient datasets. Overfitting to training data is demonstrated to occur as the network size is increased. In an extreme case, a U-net (which produces better predictions for training data) is shown to completely fail on test data due to overfitting to this case of very limited training data. Meanwhile, the resultant images from the proposed CNN (which has low training data requirements) have lower noise, reduced ringing, and partial volume effects, as well as sharper edges and improved resolution compared to conventional MLEM.

5.
Neuroimage ; 232: 117821, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588030

RESUMEN

Accurate regional brain quantitative PET measurements, particularly when using partial volume correction, rely on robust image registration between PET and MR images. We argue here that the precision, and hence the uncertainty, of MR-PET image registration is mainly driven by the registration implementation and the quality of PET images due to their lower resolution and higher noise compared to the structural MR images. We propose a dedicated uncertainty analysis for quantifying the precision of MR-PET registration, centred around the bootstrap resampling of PET list-mode events to generate multiple PET image realisations with different noise (count) levels. The effects of PET image reconstruction parameters, such as the use of attenuation and scatter corrections and different number of iterations, on the precision and accuracy of MR-PET registration were investigated. In addition, the performance of four software packages with their default settings for rigid inter-modality image registration were considered: NiftyReg, Vinci, FSL and SPM. Four distinct PET image distributions made of two early time frames (similar to cortical FDG) and two late frames using two amyloid PET dynamic acquisitions of one amyloid positive and one amyloid negative participants were investigated. For the investigated four PET frames, the biggest impact on the uncertainty was observed between registration software packages (up to 10-fold difference in precision) followed by the reconstruction parameters. On average, the lowest uncertainty for different PET frames and brain regions was observed with SPM and two iterations of fully quantitative image reconstruction. The observed uncertainty for the varying PET count-level (from 5% to 60%) was slightly lower than for the reconstruction parameters. We also observed that the registration uncertainty in quantitative PET analysis depends on amyloid status of the considered PET frames, with increased uncertainty (up to three times) when using post-reconstruction partial volume correction. This analysis is applicable for PET data obtained from either PET/MR or PET/CT scanners.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Procesamiento de Imagen Asistido por Computador/normas , Imagen por Resonancia Magnética/normas , Tomografía de Emisión de Positrones/normas , Incertidumbre , Anciano , Estudios de Cohortes , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos
6.
Med Phys ; 46(11): 5055-5074, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31494961

RESUMEN

PURPOSE: Numerous image reconstruction methodologies for positron emission tomography (PET) have been developed that incorporate magnetic resonance (MR) imaging structural information, producing reconstructed images with improved suppression of noise and reduced partial volume effects. However, the influence of MR structural information also increases the possibility of suppression or bias of structures present only in the PET data (PET-unique regions). To address this, further developments for MR-informed methods have been proposed, for example, through inclusion of the current reconstructed PET image, alongside the MR image, in the iterative reconstruction process. In this present work, a number of kernel and maximum a posteriori (MAP) methodologies are compared, with the aim of identifying methods that enable a favorable trade-off between the suppression of noise and the retention of unique features present in the PET data. METHODS: The reconstruction methods investigated were: the MR-informed conventional and spatially compact kernel methods, referred to as KEM and KEM largest value sparsification (LVS) respectively; the MR-informed Bowsher and Gaussian MR-guided MAP methods; and the PET-MR-informed hybrid kernel and anato-functional MAP methods. The trade-off between improving the reconstruction of the whole brain region and the PET-unique regions was investigated for all methods in comparison with postsmoothed maximum likelihood expectation maximization (MLEM), evaluated in terms of structural similarity index (SSIM), normalized root mean square error (NRMSE), bias, and standard deviation. Both simulated BrainWeb (10 noise realizations) and real [18 F] fluorodeoxyglucose (FDG) three-dimensional datasets were used. The real [18 F]FDG dataset was augmented with simulated tumors to allow comparison of the reconstruction methodologies for the case of known regions of PET-MR discrepancy and evaluated at full counts (100%) and at a reduced (10%) count level. RESULTS: For the high-count simulated and real data studies, the anato-functional MAP method performed better than the other methods under investigation (MR-informed, PET-MR-informed and postsmoothed MLEM), in terms of achieving the best trade-off for the reconstruction of the whole brain and PET-unique regions, assessed in terms of the SSIM, NRMSE, and bias vs standard deviation. The inclusion of PET information in the anato-functional MAP method enables the reconstruction of PET-unique regions to attain similarly low levels of bias as unsmoothed MLEM, while moderately improving the whole brain image quality for low levels of regularization. However, for low count simulated datasets the anato-functional MAP method performs poorly, due to the inclusion of noisy PET information in the regularization term. For the low counts simulated dataset, KEM LVS and to a lesser extent, HKEM performed better than the other methods under investigation in terms of achieving the best trade-off for the reconstruction of the whole brain and PET-unique regions, assessed in terms of the SSIM, NRMSE, and bias vs standard deviation. CONCLUSION: For the reconstruction of noisy data, multiple MR-informed methods produce favorable whole brain vs PET-unique region trade-off in terms of the image quality metrics of SSIM and NRMSE, comfortably outperforming the whole image denoising of postsmoothed MLEM.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18 , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...