Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Clin Hypertens ; 30(1): 12, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689333

RESUMEN

BACKGROUND: Under the adverse remodeling of the right ventricle and interventricular septum in pulmonary arterial hypertension (PAH) the left ventricle (LV) dynamics is impaired. Despite the benefits of combined aerobic and resistance physical trainings to individuals with PAH, its impact on the LV is not fully understood. OBJECTIVE: To test whether moderate-intensity combined physical training performed during the development of PAH induced by MCT in rats is beneficial to the LV's structure and function. METHODS: Male Wistar rats were divided into two groups: Sedentary Hypertensive Survival (SHS, n = 7); and Exercise Hypertensive Survival (EHS, n = 7) to test survival. To investigate the effects of combined physical training, another group of rats were divided into three groups: Sedentary Control (SC, n = 7); Sedentary Hypertensive (SH, n = 7); and Exercise Hypertensive (EH, n = 7). PAH was induced through an intraperitoneal injection of MCT (60 mg/kg). Echocardiographic evaluations were conducted on the 22nd day after MCT administration. Animals in the EHS and EH groups participated in a combined physical training program, alternating aerobic (treadmill running: 50 min, 60% maximum running speed) and resistance (ladder climbing: 15 climbs with 1 min interval, 60% maximum carrying load) exercises, one session/day, 5 days/week for approximately 4 weeks. RESULTS: The physical training increased survival and tolerance to aerobic (i.e., maximum running speed) and resistance (i.e., maximum carrying load) exertions and prevented reductions in ejection fraction and fractional shortening. In addition, the physical training mitigated oxidative stress (i.e., CAT, SOD and MDA) and inhibited adverse LV remodeling (i.e., Collagen, extracellular matrix, and cell dimensions). Moreover, the physical training preserved the amplitude and velocity of contraction and hindered the reductions in the amplitude and velocity of the intracellular Ca2+ transient in LV single myocytes. CONCLUSION: Moderate-intensity combined physical training performed during the development of MCT-induced PAH in rats protects their LV from damages to its structure and function and hence increases their tolerance to physical exertion and prolongs their survival.

2.
Life Sci ; 332: 122128, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37769805

RESUMEN

AIM: We tested the effects of low- to moderate-intensity resistance exercise training (RT) on the structure and function of pulmonary, right ventricle (RV), and skeletal muscle tissues in rats with stable pulmonary artery hypertension (PAH). MAIN METHODS: After the first monocrotaline (MCT; 20 mg/kg) injection, male rats were submitted to a RT program (Ladder climbing; 55-65 % intensity), 5 times/week. Seven days later rats received the second MCT dose. Physical effort tolerance test and echocardiographic examination were performed. After euthanasia, lung, heart, and biceps brachii were processed for histological, single myocyte, and biochemical analysis. KEY FINDINGS: RT improved survival and physical effort tolerance (i.e., maximum carrying load), mitigated the pulmonary artery resistance increase (i.e., TA/TE), and preserved cardiac function (i.e., fractional shortening, ejection fraction, stroke volume and TAPSE). RT counteracted oxidative stress (i.e., CAT, SOD, GST, MDA and NO) and adverse remodeling in lung (i.e., collapsed alveoli) and in biceps brachii (i.e., atrophy and total collagen) tissues. RT delayed RV adverse remodeling (i.e., hypertrophy, extracellular matrix, collagen types I and III, and fibrosis) and impairments in single RV myocyte contractility (i.e., amplitude and velocity to peak and relaxation). RT improved the expression of gene (i.e., miRNA 214) and intracellular Ca2+ cycling regulatory proteins (i.e., PLBser16); and of pathological (i.e., α/ß-MHC and Foxo3) and physiological (i.e., Akt, p-Akt, mTOR, p-mTOR, and Bcl-xL) hypertrophy pathways markers in RV tissue. SIGNIFICANCE: Low- to moderate-intensity RT benefits the structure and function of pulmonary, RV, and skeletal muscle tissues in rats with stable pulmonary artery hypertension.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...