Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stem Cell Rev Rep ; 19(6): 1800-1811, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37129730

RESUMEN

Proteins involved in the Alzheimer's disease (AD), such as amyloid precursor protein (APP) and presenilin-1 (PS1), play critical roles in early development of the central nervous system (CNS), as well as in innate immune and glial cell responses. Familial AD is associated with the presence of APPswe and PS1dE9 mutations. However, it is still unknown whether these mutations cause deficits in CNS development of carriers. We studied genome-wide gene expression profiles of differentiated neural progenitor cells (NPCs) from wild-type and APPswe/PS1dE9 mouse embryo telencephalon. The occurrence of strong innate immune and glial cell responses in APPswe/PS1dE9 neurospheres mainly involves microglial activation, inflammatory mediators and chemokines. APPswe/PS1dE9 neurospheres augmented up to 100-fold CCL12, CCL5, CCL3, C3, CX3CR1, TLR2 and TNF-alpha expression levels, when compared to WT neurospheres. Expression levels of the glia cell marker GFAP and microglia marker Iba-1 were up to 20-fold upregulated in APPswe/PS1dE9 neurospheres. The secretome of differentiated APPswe/PS1dE9 NPCs revealed enhanced chemoattraction of peripheral blood mononuclear cells. When evaluating the inferred protein interaction networks constructed from the array data, an improvement in astrocyte differentiation in APPswe/PS1dE9 neurospheres was evident in view of increased GFAP expression. Transgenic NPCs differentiated into neural phenotypes presented expression patterns of cytokine, glial cells, and inflammatory mediators characteristic of APPswe/PS1dE9 adult animals. Consequently, the neurogenic niche obtained from differentiation of embryonic APPswe/PS1dE9 neurospheres spontaneously presents several alterations observed in adult AD brains. Finally, our data strengthen pathophysiological hypotheses that propose an early neurodevelopmental origin for familial AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Leucocitos Mononucleares/metabolismo , Ratones Transgénicos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Neuroglía/metabolismo , Diferenciación Celular/genética , Mediadores de Inflamación , Inmunidad Innata/genética
2.
Cell Oncol (Dordr) ; 45(3): 479-504, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35567709

RESUMEN

PURPOSE: Transcriptome analysis of pancreatic ductal adenocarcinoma (PDAC) has been useful to identify gene expression changes that sustain malignant phenotypes. Yet, most studies examined only tumor tissues and focused on protein-coding genes, leaving long non-coding RNAs (lncRNAs) largely underexplored. METHODS: We generated total RNA-Seq data from patient-matched tumor and nonmalignant pancreatic tissues and implemented a computational pipeline to survey known and novel lncRNAs. siRNA-mediated knockdown in tumor cell lines was performed to assess the contribution of PDAC-associated lncRNAs to malignant phenotypes. Gene co-expression network and functional enrichment analyses were used to assign deregulated lncRNAs to biological processes and molecular pathways. RESULTS: We detected 9,032 GENCODE lncRNAs as well as 523 unannotated lncRNAs, including transcripts significantly associated with patient outcome. Aberrant expression of a subset of novel and known lncRNAs was confirmed in patient samples and cell lines. siRNA-mediated knockdown of a subset of these lncRNAs (LINC01559, LINC01133, CCAT1, LINC00920 and UCA1) reduced cell proliferation, migration and invasion. Gene co-expression network analysis associated PDAC-deregulated lncRNAs with diverse biological processes, such as cell adhesion, protein glycosylation and DNA repair. Furthermore, UCA1 knockdown was shown to specifically deregulate co-expressed genes involved in DNA repair and to negatively impact DNA repair following damage induced by ionizing radiation. CONCLUSIONS: Our study expands the repertoire of lncRNAs deregulated in PDAC, thereby revealing novel candidate biomarkers for patient risk stratification. It also provides a roadmap for functional assays aimed to characterize novel mechanisms of action of lncRNAs in pancreatic cancer, which could be explored for therapeutic development.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , ARN Largo no Codificante , Adenocarcinoma/genética , Adenocarcinoma/patología , Carcinoma Ductal Pancreático/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pancreáticas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...