RESUMEN
Regeneration of insulin-producing ß-cells is an alternative avenue to manage diabetes, and it is crucial to unravel this process in vivo during physiological responses to the lack of ß-cells. Here, we aimed to characterize how hepatocytes can contribute to ß-cell regeneration, either directly or indirectly via secreted proteins or metabolites, in a zebrafish model of ß-cell loss. Using lineage tracing, we show that hepatocytes do not directly convert into ß-cells even under extreme ß-cell ablation conditions. A transcriptomic analysis of isolated hepatocytes after ß-cell ablation displayed altered lipid- and glucose-related processes. Based on the transcriptomics, we performed a genetic screen that uncovers a potential role of the molybdenum cofactor (Moco) biosynthetic pathway in ß-cell regeneration and glucose metabolism in zebrafish. Consistently, molybdenum cofactor synthesis 2 (Mocs2) haploinsufficiency in mice indicated dysregulated glucose metabolism and liver function. Together, our study sheds light on the liver-pancreas crosstalk and suggests that the molybdenum cofactor biosynthesis pathway should be further studied in relation to glucose metabolism and diabetes.
Asunto(s)
Coenzimas , Glucosa , Hepatocitos , Células Secretoras de Insulina , Hígado , Metaloproteínas , Cofactores de Molibdeno , Pteridinas , Pez Cebra , Animales , Células Secretoras de Insulina/metabolismo , Pteridinas/metabolismo , Coenzimas/metabolismo , Ratones , Hígado/metabolismo , Hígado/citología , Metaloproteínas/metabolismo , Metaloproteínas/genética , Hepatocitos/metabolismo , Glucosa/metabolismo , Regeneración/genética , Páncreas/metabolismo , Páncreas/citología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Obesity is a global health problem characterized by excessive fat accumulation, driven by adipogenesis and lipid accumulation. Long non-coding RNAs (lncRNAs) have recently been implicated in regulating adipogenesis and adipose tissue function. Mouse lncRNA U90926 was previously identified as a repressor of in vitro adipogenesis in 3T3-L1 preadipocytes. Consequently, we hypothesized that, in vivo, U90926 may repress adipogenesis, and hence its deletion would increase weight gain and adiposity. We tested the hypothesis by applying U90926-deficient (U9-KO) mice to a high-throughput phenotyping pipeline. Compared with WT, U9-KO mice showed no major differences across a wide range of behavioral, neurological, and other physiological parameters. In mice fed a standard diet, we have found no differences in obesity-related phenotypes, including weight gain, fat mass, and plasma concentrations of glucose, insulin, triglycerides, and free fatty acids, in U9-KO mice compared to WT. U90926 deficiency lacked a major effect on white adipose tissue morphology and gene expression profile. Furthermore, in mice fed a high-fat diet, we found increased expression of U90926 in adipose tissue stromal vascular cell fraction, yet observed no effect of U90926 deficiency on weight gain, fat mass, adipogenesis marker expression, and immune cell infiltration into the adipose tissue. These data suggest that the U90926 lacks an essential role in obesity-related phenotypes and adipose tissue biology in vivo.
Asunto(s)
ARN Largo no Codificante , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Adipocitos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Adipogénesis/genética , Aumento de Peso , Dieta Alta en Grasa/efectos adversos , Fenotipo , Ratones Endogámicos C57BLRESUMEN
Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.
Asunto(s)
Discapacidades del Desarrollo , Embrión de Mamíferos , Mutación , Fenotipo , Análisis de Expresión Génica de una Sola Célula , Animales , Ratones , Núcleo Celular/genética , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Mutación con Ganancia de Función , Genotipo , Mutación con Pérdida de Función , Modelos Genéticos , Modelos Animales de EnfermedadRESUMEN
The alternative oxidase, AOX, provides a by-pass of the cytochrome segment of the mitochondrial respiratory chain when the chain is unavailable. AOX is absent from mammals, but AOX from Ciona intestinalis is benign when expressed in mice. Although non-protonmotive, so does not contribute directly to ATP production, it has been shown to modify and in some cases rescue phenotypes of respiratory-chain disease models. Here we studied the effect of C. intestinalis AOX on mice engineered to express a disease-equivalent mutant of Uqcrh, encoding the hinge subunit of mitochondrial respiratory complex III, which results in a complex metabolic phenotype beginning at 4-5 weeks, rapidly progressing to lethality within a further 6-7 weeks. AOX expression delayed the onset of this phenotype by several weeks, but provided no long-term benefit. We discuss the significance of this finding in light of the known and hypothesized effects of AOX on metabolism, redox homeostasis, oxidative stress and cell signaling. Although not a panacea, the ability of AOX to mitigate disease onset and progression means it could be useful in treatment.
Asunto(s)
Complejo III de Transporte de Electrones , Mitocondrias , Animales , Ratones , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Membranas Mitocondriales/metabolismo , Fenotipo , Factores de Transcripción/metabolismo , Mamíferos/metabolismoRESUMEN
Echocardiography, a rapid and cost-effective imaging technique, assesses cardiac function and structure. Despite its popularity in cardiovascular medicine and clinical research, image-derived phenotypic measurements are manually performed, requiring expert knowledge and training. Notwithstanding great progress in deep-learning applications in small animal echocardiography, the focus has so far only been on images of anesthetized rodents. We present here a new algorithm specifically designed for echocardiograms acquired in conscious mice called Echo2Pheno, an automatic statistical learning workflow for analyzing and interpreting high-throughput non-anesthetized transthoracic murine echocardiographic images in the presence of genetic knockouts. Echo2Pheno comprises a neural network module for echocardiographic image analysis and phenotypic measurements, including a statistical hypothesis-testing framework for assessing phenotypic differences between populations. Using 2159 images of 16 different knockout mouse strains of the German Mouse Clinic, Echo2Pheno accurately confirms known cardiovascular genotype-phenotype relationships (e.g., Dystrophin) and discovers novel genes (e.g., CCR4-NOT transcription complex subunit 6-like, Cnot6l, and synaptotagmin-like protein 4, Sytl4), which cause altered cardiovascular phenotypes, as verified by H&E-stained histological images. Echo2Pheno provides an important step toward automatic end-to-end learning for linking echocardiographic readouts to cardiovascular phenotypes of interest in conscious mice.
Asunto(s)
Aprendizaje Profundo , Ratones , Animales , Ecocardiografía/métodos , Corazón , Algoritmos , Fenotipo , RibonucleasasRESUMEN
Rare diseases (RDs) are a challenge for medicine due to their heterogeneous clinical manifestations and low prevalence. There is a lack of specific treatments and only a few hundred of the approximately 7,000 RDs have an approved regime. Rapid technological development in genome sequencing enables the mass identification of potential candidates that in their mutated form could trigger diseases but are often not confirmed to be causal. Knockout (KO) mouse models are essential to understand the causality of genes by allowing highly standardized research into the pathogenesis of diseases. The German Mouse Clinic (GMC) is one of the pioneers in mouse research and successfully uses (preclinical) data obtained from single-gene KO mutants for research into monogenic RDs. As part of the International Mouse Phenotyping Consortium (IMPC) and INFRAFRONTIER, the pan-European consortium for modeling human diseases, the GMC expands these preclinical data toward global collaborative approaches with researchers, clinicians, and patient groups.Here, we highlight proprietary genes that when deleted mimic clinical phenotypes associated with known RD targets (Nacc1, Bach2, Klotho alpha). We focus on recognized RD genes with no pre-existing KO mouse models (Kansl1l, Acsf3, Pcdhgb2, Rabgap1, Cox7a2) which highlight novel phenotypes capable of optimizing clinical diagnosis. In addition, we present genes with intriguing phenotypic data (Zdhhc5, Wsb2) that are not presently associated with known human RDs.This report provides comprehensive evidence for genes that when deleted cause differences in the KO mouse across multiple organs, providing a huge translational potential for further understanding monogenic RDs and their clinical spectrum. Genetic KO studies in mice are valuable to further explore the underlying physiological mechanisms and their overall therapeutic potential.
Asunto(s)
Enfermedades Raras , Ratones , Animales , Humanos , Ratones Noqueados , Enfermedades Raras/genética , Técnicas de Inactivación de Genes , FenotipoRESUMEN
Ubiquinol cytochrome c reductase hinge protein (UQCRH) is required for the electron transfer between cytochrome c1 and c of the mitochondrial cytochrome bc1 Complex (CIII). A two-exon deletion in the human UQCRH gene has recently been identified as the cause for a rare familial mitochondrial disorder. Deletion of the corresponding gene in the mouse (Uqcrh-KO) resulted in striking biochemical and clinical similarities including impairment of CIII, failure to thrive, elevated blood glucose levels, and early death. Here, we set out to test how global ablation of the murine Uqcrh affects cardiac morphology and contractility, and bioenergetics. Hearts from Uqcrh-KO mutant mice appeared macroscopically considerably smaller compared to wildtype littermate controls despite similar geometries as confirmed by transthoracic echocardiography (TTE). Relating TTE-assessed heart to body mass revealed the development of subtle cardiac enlargement, but histopathological analysis showed no excess collagen deposition. Nonetheless, Uqcrh-KO hearts developed pronounced contractile dysfunction. To assess mitochondrial functions, we used the high-resolution respirometer NextGen-O2k allowing measurement of mitochondrial respiratory capacity through the electron transfer system (ETS) simultaneously with the redox state of ETS-reactive coenzyme Q (Q), or production of reactive oxygen species (ROS). Compared to wildtype littermate controls, we found decreased mitochondrial respiratory capacity and more reduced Q in Uqcrh-KO, indicative for an impaired ETS. Yet, mitochondrial ROS production was not generally increased. Taken together, our data suggest that Uqcrh-KO leads to cardiac contractile dysfunction at 9 weeks of age, which is associated with impaired bioenergetics but not with mitochondrial ROS production. Global ablation of the Uqcrh gene results in functional impairment of CIII associated with metabolic dysfunction and postnatal developmental arrest immediately after weaning from the mother. Uqcrh-KO mice show dramatically elevated blood glucose levels and decreased ability of isolated cardiac mitochondria to consume oxygen (O2). Impaired development (failure to thrive) after weaning manifests as a deficiency in the gain of body mass and growth of internal organ including the heart. The relative heart mass seemingly increases when organ mass calculated from transthoracic echocardiography (TTE) is normalized to body mass. Notably, the heart shows no signs of collagen deposition, yet does develop a contractile dysfunction reflected by a decrease in ejection fraction and fractional shortening.
Asunto(s)
Glucemia , Insuficiencia de Crecimiento , Humanos , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Ratones Noqueados , Metabolismo Energético/genética , Factores de Transcripción/metabolismoRESUMEN
Current concepts regarding the biology of aging are primarily based on studies aimed at identifying factors regulating lifespan. However, lifespan as a sole proxy measure for aging can be of limited value because it may be restricted by specific pathologies. Here, we employ large-scale phenotyping to analyze hundreds of markers in aging male C57BL/6J mice. For each phenotype, we establish lifetime profiles to determine when age-dependent change is first detectable relative to the young adult baseline. We examine key lifespan regulators (putative anti-aging interventions; PAAIs) for a possible countering of aging. Importantly, unlike most previous studies, we include in our study design young treated groups of animals, subjected to PAAIs prior to the onset of detectable age-dependent phenotypic change. Many PAAI effects influence phenotypes long before the onset of detectable age-dependent change, but, importantly, do not alter the rate of phenotypic change. Hence, these PAAIs have limited effects on aging.
Asunto(s)
Envejecimiento , Longevidad , Ratones , Animales , Masculino , Longevidad/genética , Ratones Endogámicos C57BL , Envejecimiento/fisiología , FenotipoRESUMEN
Understanding the shared genetic aetiology of psychiatric and medical comorbidity in neurodevelopmental disorders (NDDs) could improve patient diagnosis, stratification and treatment options. Rare tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 2 (TANC2)-disrupting variants were disease causing in NDD patients. The post-synaptic scaffold protein TANC2 is essential for dendrite formation in synaptic plasticity and plays an unclarified but critical role in development. We here report a novel homozygous-viable Tanc2-disrupted function model in which mutant mice were hyperactive and had impaired sensorimotor gating consistent with NDD patient psychiatric endophenotypes. Yet, a multi-systemic analysis revealed the pleiotropic effects of Tanc2 outside the brain, such as growth failure and hepatocellular damage. This was associated with aberrant liver function including altered hepatocellular metabolism. Integrative analysis indicates that these disrupted Tanc2 systemic effects relate to interaction with Hippo developmental signalling pathway proteins and will increase the risk for comorbid somatic disease. This highlights how NDD gene pleiotropy can augment medical comorbidity susceptibility, underscoring the benefit of holistic NDD patient diagnosis and treatment for which large-scale preclinical functional genomics can provide complementary pleiotropic gene function information.
Asunto(s)
Trastornos del Neurodesarrollo , Proteínas , Animales , Encéfalo/metabolismo , Humanos , Ratones , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Plasticidad Neuronal , Dominios Proteicos , Proteínas/metabolismoRESUMEN
Mitochondrial disorders are clinically and genetically diverse, with isolated complex III (CIII) deficiency being relatively rare. Here, we describe two affected cousins, presenting with recurrent episodes of severe lactic acidosis, hyperammonaemia, hypoglycaemia and encephalopathy. Genetic investigations in both cases identified a homozygous deletion of exons 2 and 3 of UQCRH, which encodes a structural complex III (CIII) subunit. We generated a mouse model with the equivalent homozygous Uqcrh deletion (Uqcrh-/- ), which also presented with lactic acidosis and hyperammonaemia, but had a more severe, non-episodic phenotype, resulting in failure to thrive and early death. The biochemical phenotypes observed in patient and Uqcrh-/- mouse tissues were remarkably similar, displaying impaired CIII activity, decreased molecular weight of fully assembled holoenzyme and an increase of an unexpected large supercomplex (SXL ), comprising mostly of one complex I (CI) dimer and one CIII dimer. This phenotypic similarity along with lentiviral rescue experiments in patient fibroblasts verifies the pathogenicity of the shared genetic defect, demonstrating that the Uqcrh-/- mouse is a valuable model for future studies of human CIII deficiency.
Asunto(s)
Enfermedades Mitocondriales , Animales , Complejo III de Transporte de Electrones , Exones , Homocigoto , Humanos , Ratones , Enfermedades Mitocondriales/genética , Fenotipo , Eliminación de SecuenciaRESUMEN
Pathogenic variants in the WDR45 (OMIM: 300,526) gene on chromosome Xp11 are the genetic cause of a rare neurological disorder characterized by increased iron deposition in the basal ganglia. As WDR45 encodes a beta-propeller scaffold protein with a putative role in autophagy, the disease has been named Beta-Propeller Protein-Associated Neurodegeneration (BPAN). BPAN represents one of the four most common forms of Neurodegeneration with Brain Iron Accumulation (NBIA). In the current study, we generated and characterized a whole-body Wdr45 knock-out (KO) mouse model. The model, developed using TALENs, presents a 20-bp deletion in exon 2 of Wdr45. Homozygous females and hemizygous males are viable, proving that systemic depletion of Wdr45 does not impair viability and male fertility in mice. The in-depth phenotypic characterization of the mouse model revealed neuropathology signs at four months of age, neurodegeneration progressing with ageing, hearing and visual impairment, specific haematological alterations, but no brain iron accumulation. Biochemically, Wdr45 KO mice presented with decreased complex I (CI) activity in the brain, suggesting that mitochondrial dysfunction accompanies Wdr45 deficiency. Overall, the systemic Wdr45 KO described here complements the two mouse models previously reported in the literature (PMIDs: 26,000,824, 31,204,559) and represents an additional robust model to investigate the pathophysiology of BPAN and to test therapeutic strategies for the disease.
Asunto(s)
Proteínas Portadoras/genética , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , FenotipoRESUMEN
CRELD1 (Cysteine-Rich with EGF-Like Domains 1) is a risk gene for non-syndromic atrioventricular septal defects in human patients. In a mouse model, Creld1 has been shown to be essential for heart development, particularly in septum and valve formation. However, due to the embryonic lethality of global Creld1 knockout (KO) mice, its cell type-specific function during peri- and postnatal stages remains unknown. Here, we generated conditional Creld1 KO mice lacking Creld1 either in the endocardium (KOTie2) or the myocardium (KOMyHC). Using a combination of cardiac phenotyping, histology, immunohistochemistry, RNA-sequencing, and flow cytometry, we demonstrate that Creld1 function in the endocardium is dispensable for heart development. Lack of myocardial Creld1 causes extracellular matrix remodeling and trabeculation defects by modulation of the Notch1 signaling pathway. Hence, KOMyHC mice die early postnatally due to myocardial hypoplasia. Our results reveal that Creld1 not only controls the formation of septa and valves at an early stage during heart development, but also cardiac maturation and function at a later stage. These findings underline the central role of Creld1 in mammalian heart development and function.
Asunto(s)
Moléculas de Adhesión Celular/genética , Proteínas de la Matriz Extracelular/genética , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Corazón/fisiología , Miocardio/metabolismo , Organogénesis/genética , Animales , Biomarcadores , Moléculas de Adhesión Celular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Ratones Noqueados , Análisis de la Célula IndividualRESUMEN
Isolated methylmalonic aciduria (MMAuria) is primarily caused by deficiency of methylmalonyl-CoA mutase (MMUT or MUT). Biochemically, MUT deficiency results in the accumulation of methylmalonic acid (MMA), propionyl-carnitine (C3) and other metabolites. Patients often exhibit lethargy, failure to thrive and metabolic decompensation leading to coma or even death, with kidney and neurological impairment frequently identified in the long-term. Here, we report a hemizygous mouse model which combines a knock-in (ki) missense allele of Mut with a knock-out (ko) allele (Mut-ko/ki mice) that was fed a 51%-protein diet from day 12 of life, constituting a bespoke model of MMAuria. Under this diet, mutant mice developed a pronounced metabolic phenotype characterized by drastically increased blood levels of MMA and C3 compared to their littermate controls (Mut-ki/wt). With this bespoke mouse model, we performed a standardized phenotypic screen to assess the whole-body impairments associated with this strong metabolic condition. We found that Mut-ko/ki mice show common clinical manifestations of MMAuria, including pronounced failure to thrive, indications of mild neurological and kidney dysfunction, and degenerative morphological changes in the liver, along with less well described symptoms such as cardiovascular and hematological abnormalities. The analyses also reveal so far unknown disease characteristics, including low bone mineral density, anxiety-related behaviour and ovarian atrophy. This first phenotypic screening of a MMAuria mouse model confirms its relevance to human disease, reveals new alterations associated with MUT deficiency, and suggests a series of quantifiable readouts that can be used to evaluate potential treatment strategies.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/patología , Metilmalonil-CoA Mutasa/deficiencia , Metilmalonil-CoA Mutasa/genética , Animales , Ansiedad/genética , Ansiedad/patología , Densidad Ósea/genética , Modelos Animales de Enfermedad , Femenino , Riñón/patología , Masculino , Ácido Metilmalónico/metabolismo , Ratones , FenotipoRESUMEN
Since decades, model organisms have provided an important approach for understanding the mechanistic basis of human diseases. The German Mouse Clinic (GMC) was the first phenotyping facility that established a collaboration-based platform for phenotype characterization of mouse lines. In order to address individual projects by a tailor-made phenotyping strategy, the GMC advanced in developing a series of pipelines with tests for the analysis of specific disease areas. For a general broad analysis, there is a screening pipeline that covers the key parameters for the most relevant disease areas. For hypothesis-driven phenotypic analyses, there are thirteen additional pipelines with focus on neurological and behavioral disorders, metabolic dysfunction, respiratory system malfunctions, immune-system disorders and imaging techniques. In this article, we give an overview of the pipelines and describe the scientific rationale behind the different test combinations.
Asunto(s)
Modelos Animales de Enfermedad , Ratones Transgénicos , Fenotipo , Animales , HumanosRESUMEN
Cln3(Δex7/8) mice harbor the most common genetic defect causing juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive disease involving seizures, visual, motor and cognitive decline, and premature death. Here, to more thoroughly investigate the manifestations of the common JNCL mutation, we performed a broad phenotyping study of Cln3(Δex7/8) mice. Homozygous Cln3(Δex7/8) mice, congenic on a C57BL/6N background, displayed subtle deficits in sensory and motor tasks at 10-14 weeks of age. Homozygous Cln3(Δex7/8) mice also displayed electroretinographic changes reflecting cone function deficits past 5 months of age and a progressive decline of retinal post-receptoral function. Metabolic analysis revealed increases in rectal body temperature and minimum oxygen consumption in 12-13 week old homozygous Cln3(Δex7/8) mice, which were also seen to a lesser extent in heterozygous Cln3(Δex7/8) mice. Heart weight was slightly increased at 20 weeks of age, but no significant differences were observed in cardiac function in young adults. In a comprehensive blood analysis at 15-16 weeks of age, serum ferritin concentrations, mean corpuscular volume of red blood cells (MCV), and reticulocyte counts were reproducibly increased in homozygous Cln3(Δ) (ex7/8) mice, and male homozygotes had a relative T-cell deficiency, suggesting alterations in hematopoiesis. Finally, consistent with findings in JNCL patients, vacuolated peripheral blood lymphocytes were observed in homozygous Cln3(Δ) (ex7/8) neonates, and to a greater extent in older animals. Early onset, severe vacuolation in clear cells of the epididymis of male homozygous Cln3(Δ) (ex7/8) mice was also observed. These data highlight additional organ systems in which to study CLN3 function, and early phenotypes have been established in homozygous Cln3(Δ) (ex7/8) mice that merit further study for JNCL biomarker development.
Asunto(s)
Modelos Animales de Enfermedad , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Fenotipo , Degeneración Retiniana/patología , Análisis de Varianza , Animales , Temperatura Corporal , Encéfalo/patología , Electrorretinografía , Conducta Exploratoria/fisiología , Femenino , Ferritinas/sangre , Genotipo , Corazón/crecimiento & desarrollo , Inmunohistoquímica , Linfocitos/patología , Masculino , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Chaperonas Moleculares/genética , Lipofuscinosis Ceroideas Neuronales/complicaciones , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Tamaño de los Órganos , Consumo de Oxígeno/fisiología , Degeneración Retiniana/etiologíaRESUMEN
Ewing tumors comprise the second most common type of bone-associated cancer in children and are characterized by oncogenic EWS/FLI1 fusion proteins and early metastasis. Compelling evidence suggests that elevated levels of intracellular oxidative stress contribute to enhanced aggressiveness of numerous cancers, possibly including Ewing tumors. Using comprehensive microarray analyses and RNA interference, we identified the six-transmembrane epithelial antigen of the prostate 1 (STEAP1)-a membrane-bound mesenchymal stem cell marker of unknown function-as a highly expressed protein in Ewing tumors compared with benign tissues and show its regulation by EWS/FLI1. In addition, we show that STEAP1 knockdown reduces Ewing tumor proliferation, anchorage-independent colony formation as well as invasion in vitro and decreases growth and metastasis of Ewing tumor xenografts in vivo. Moreover, transcriptome and proteome analyses as well as functional studies revealed that STEAP1 expression correlates with oxidative stress responses and elevated levels of reactive oxygen species that in turn are able to regulate redox-sensitive and proinvasive genes. In synopsis, our data suggest that STEAP1 is associated with the invasive behavior and oxidative stress phenotype of Ewing tumors and point to a hitherto unanticipated oncogenic function of STEAP1.
Asunto(s)
Antígenos de Neoplasias/fisiología , Neoplasias Óseas/patología , Estrés Oxidativo/genética , Oxidorreductasas/fisiología , Sarcoma de Ewing/patología , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Análisis por Micromatrices , Invasividad Neoplásica , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fenotipo , Proteómica , ARN Interferente Pequeño/farmacología , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismoRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) and its precursor lesions, pancreatic intraepithelial neoplasia (PanIN), display a ductal phenotype. However, there is evidence in genetically defined mouse models for PDAC harbouring a mutated kras under the control of a pancreas-specific promoter that ductal cancer might arise in the centroacinar-acinar region, possibly through a process of acinar-ductal metaplasia (ADM). In order to further elucidate this model of PDAC development, an extensive expression analysis and molecular characterization of the putative and already established (PanIN) precursor lesions were performed in the Kras(G12D/+) ; Ptf1a-Cre(ex1/+) mouse model and in human tissues, focusing on lineage markers, developmental pathways, cell cycle regulators, apomucins, and stromal activation markers. The results of this study show that areas of ADM are very frequent in the murine and human pancreas and represent regions of increased proliferation of cells with precursor potential. Moreover, atypical flat lesions originating in areas of ADM are the most probable precursors of PDAC in the Kras(G12D/+); Ptf1a-Cre(ex1/+) mice and similar lesions were also found in the pancreas of three patients with a strong family history of PDAC. In conclusion, PDAC development in Kras(G12D/+); Ptf1a-Cre(ex1/+) mice starts from ADM and a similar process might also take place in patients with a strong family history of PDAC.
Asunto(s)
Carcinoma in Situ/patología , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/patología , Neoplasias Experimentales/patología , Neoplasias Pancreáticas/patología , Lesiones Precancerosas/patología , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Diferenciación Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes ras , Predisposición Genética a la Enfermedad , Herencia , Humanos , Inmunohistoquímica , Metaplasia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Linaje , Fenotipo , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo , Factores de Transcripción/genéticaRESUMEN
Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/[2]).
Asunto(s)
Ratones Mutantes , Fenotipo , Animales , Conducta Animal , Análisis Químico de la Sangre/métodos , Catarata/patología , Pruebas de Función Renal/métodos , Ratones , Ratones Mutantes Neurológicos , Mutagénesis , Dimensión del Dolor/métodos , Dimensión del Dolor/normas , Estándares de Referencia , Urinálisis/métodosRESUMEN
The postnatal mouse ovary is rich in quiescent and early-growing oocytes, each one surrounded by a layer of somatic granulosa cells (GCs) on a basal lamina. As oocytes start to grow the GCs change shape from flattened to cuboidal, increase their proliferation and form multiple layers, providing a unique model for studying the relationship between cell shape, proliferation and multilayering within the context of two different intercommunicating cell types: somatic and germ cells. Proliferation of GCs was quantified using immunohistochemistry for Ki67 and demonstrated that, unusually, cuboidal cells divided more than flat cells. As a second layer of GCs started to appear, cells on the basal lamina reached maximum packing density and the axes of their mitoses became perpendicular to the basal lamina, resulting in cells dividing inwards to form second and subsequent layers. Proliferation of basal GCs was less than that of inner cells. Ultrastructurally, collagen fibrils outside the basal lamina became more numerous as follicles developed. We propose that the basement membrane and/or theca cells that surround the follicle provide an important confinement for rapidly dividing columnar cells so that they attain maximum packing density, which restricts lateral mitosis and promotes inwardly oriented cell divisions and subsequent multilayering.
Asunto(s)
Proliferación Celular , Células de la Granulosa/citología , Folículo Ovárico/crecimiento & desarrollo , Animales , Forma de la Célula , Femenino , Células de la Granulosa/ultraestructura , Inmunohistoquímica , Antígeno Ki-67/metabolismo , Ratones , Microscopía Electrónica de Transmisión , Mitosis , Oocitos/crecimiento & desarrollo , Folículo Ovárico/ultraestructura , Ovario/metabolismo , Ovario/ultraestructura , Células Tecales/metabolismo , Células Tecales/ultraestructuraRESUMEN
CONTEXT: Polycystic ovary syndrome, the most common cause of anovulatory infertility, is characterized by disordered folliculogenesis, notably increased progression from the primordial to the primary stages. This ovarian phenotype is similar to that observed in mice lacking anti-müllerian hormone (AMH). OBJECTIVE: The objective of this study is to investigate whether AMH is involved in accelerating the transition of follicles from primordial to primary stages in polycystic ovaries. DESIGN: This study compares AMH expression in archive tissue from normal and polycystic ovaries. SETTING: This is a laboratory-based study. PATIENTS: Ovarian tissue from seven normoovulatory women and 16 women with polycystic ovaries (five of whom were anovulatory) was used in this study. Ovaries were classified by histology and with reference to menstrual cycle history and ultrasound. MAIN OUTCOME MEASURE: Presence and intensity of AMH expression in 1403 follicles was the main outcome measure. RESULTS: AMH was observed from the primordial stage onward. AMH immunostaining was observed in significantly fewer primordial (P = 0.007) and transitional follicles (P = 0.001) in ovaries from anovulatory women with polycystic ovaries compared with women with regular cycles and either normal or polycystic ovaries. AMH-negative follicles had fewer pregranulosa cells in the largest cross-section of the follicle at both the primordial (median, four and six for AMH-negative and -positive follicles, respectively; P < 0.0001) and transitional stages (median six and nine; P < 0.0007) in normal tissue, and fewer at the transitional stage (median, seven and 11; P < 0.0001) in tissue from anovulatory women with polycystic ovaries. This suggests that AMH expression is associated with granulosa cell mitosis. CONCLUSIONS: These findings indicate a relative deficiency of AMH in primordial and transitional follicles in ovaries from anovulatory women with polycystic ovaries. This may contribute to disordered early follicle development in polycystic ovary syndrome.