Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Oncogene ; 40(36): 5455-5467, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34290400

RESUMEN

Epidemiologic studies in diabetic patients as well as research in model organisms have indicated the potential of metformin as a drug candidate for the treatment of various types of cancer, including breast cancer. To date most of the anti-cancer properties of metformin have, in large part, been attributed either to the inhibition of mitochondrial NADH oxidase complex (Complex I in the electron transport chain) or the activation of AMP-activated kinase (AMPK). However, it is becoming increasingly clear that AMPK activation may be critical to alleviate metabolic and energetic stresses associated with tumor progression suggesting that it may, in fact, attenuate the toxicity of metformin instead of promoting it. Here, we demonstrate that AMPK opposes the detrimental effects of mitochondrial complex I inhibition by enhancing glycolysis at the expense of, and in a manner dependent on, pyruvate availability. We also found that metformin forces cells to rewire their metabolic grid in a manner that depends on AMPK, with AMPK-competent cells upregulating glycolysis and AMPK-deficient cell resorting to ketogenesis. In fact, while the killing effects of metformin were largely rescued by pyruvate in AMPKcompetent cells, AMPK-deficient cells required instead acetoacetate, a product of fatty acid catabolism indicating a switch from sugar to fatty acid metabolism as a central resource for ATP production in these cells. In summary, our results indicate that AMPK activation is not responsible for metformin anticancer activity and may instead alleviate energetic stress by activating glycolysis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Metformina , Neoplasias de la Mama , Metabolismo de los Hidratos de Carbono , Metabolismo Energético , Glucólisis , Humanos
3.
Nat Commun ; 12(1): 2296, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33863880

RESUMEN

Brazil experienced a large dengue virus (DENV) epidemic in 2019, highlighting a continuous struggle with effective control and public health preparedness. Using Oxford Nanopore sequencing, we led field and classroom initiatives for the monitoring of DENV in Brazil, generating 227 novel genome sequences of DENV1-2 from 85 municipalities (2015-2019). This equated to an over 50% increase in the number of DENV genomes from Brazil available in public databases. Using both phylogenetic and epidemiological models we retrospectively reconstructed the recent transmission history of DENV1-2. Phylogenetic analysis revealed complex patterns of transmission, with both lineage co-circulation and replacement. We identified two lineages within the DENV2 BR-4 clade, for which we estimated the effective reproduction number and pattern of seasonality. Overall, the surveillance outputs and training initiative described here serve as a proof-of-concept for the utility of real-time portable sequencing for research and local capacity building in the genomic surveillance of emerging viruses.


Asunto(s)
Virus del Dengue/genética , Dengue/epidemiología , Epidemias/prevención & control , Monitoreo Epidemiológico , Brasil/epidemiología , Dengue/prevención & control , Dengue/transmisión , Dengue/virología , Virus del Dengue/aislamiento & purificación , Estudios de Factibilidad , Variación Genética , Genoma Viral/genética , Humanos , Unidades Móviles de Salud , Epidemiología Molecular , Tipificación Molecular , Filogenia , Prueba de Estudio Conceptual , ARN Viral/genética , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Estudios Retrospectivos , Secuenciación Completa del Genoma
4.
PLoS Negl Trop Dis ; 15(4): e0009290, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33861753

RESUMEN

Since introduction into Brazil in 2014, chikungunya virus (CHIKV) has presented sustained transmission, although much is unknown about its circulation in the midwestern states. Here, we analyze 24 novel partial and near complete CHIKV genomes from Cuiaba, an urban metropolis located in the Brazilian midwestern state of Mato Grosso (MT). Nanopore technology was used for sequencing CHIKV complete genomes. Phylogenetic and epidemiological approaches were used to explore the recent spatio-temporal evolution and spread of the CHIKV-ECSA genotype in Midwest Brazil as well as in the Americas. Epidemiological data revealed a reduction in the number of reported cases over 2018-2020, likely as a consequence of a gradual accumulation of herd-immunity. Phylogeographic reconstructions revealed that at least two independent introductions of the ECSA lineage occurred in MT from a dispersion event originating in the northeastern region and suggest that the midwestern Brazilian region appears to have acted as a source of virus transmission towards Paraguay, a bordering South American country. Our results show a complex dynamic of transmission between epidemic seasons and suggest a possible role of Brazil as a source for international dispersion of the CHIKV-ECSA genotype to other countries in the Americas.


Asunto(s)
Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/transmisión , Virus Chikungunya/genética , Genoma Viral/genética , Adolescente , Adulto , Teorema de Bayes , Brasil/epidemiología , Fiebre Chikungunya/diagnóstico , Virus Chikungunya/aislamiento & purificación , Monitoreo Epidemiológico , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Análisis Espacio-Temporal , Secuenciación Completa del Genoma , Adulto Joven
5.
Clin Infect Dis ; 73(7): e2436-e2443, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32766829

RESUMEN

BACKGROUND: Chikungunya virus (CHIKV) emerged in the Americas in 2013 and has caused approximately 2.1 million cases and >600 deaths. A retrospective investigation was undertaken to describe clinical, epidemiological, and viral genomic features associated with deaths caused by CHIKV in Ceará state, northeast Brazil. METHODS: Sera, cerebrospinal fluid (CSF), and tissue samples from 100 fatal cases with suspected arbovirus infection were tested for CHIKV, dengue virus (DENV), and Zika virus (ZIKV). Clinical, epidemiological, and death reports were obtained for patients with confirmed CHIKV infection. Logistic regression analysis was undertaken to identify independent factors associated with risk of death during CHIKV infection. Phylogenetic analysis was conducted using whole genomes from a subset of cases. RESULTS: Sixty-eight fatal cases had CHIKV infection confirmed by reverse-transcription quantitative polymerase chain reaction (52.9%), viral antigen (41.1%), and/or specific immunoglobulin M (63.2%). Co-detection of CHIKV with DENV was found in 22% of fatal cases, ZIKV in 2.9%, and DENV and ZIKV in 1.5%. A total of 39 CHIKV deaths presented with neurological signs and symptoms, and CHIKV-RNA was found in the CSF of 92.3% of these patients. Fatal outcomes were associated with irreversible multiple organ dysfunction syndrome. Patients with diabetes appear to die at a higher frequency during the subacute phase. Genetic analysis showed circulation of 2 CHIKV East-Central-South African (ECSA) lineages in Ceará and revealed no unique virus genomic mutation associated with fatal outcome. CONCLUSIONS: The investigation of the largest cross-sectional cohort of CHIKV deaths to date reveals that CHIKV-ECSA strains can cause death in individuals from both risk and nonrisk groups, including young adults.


Asunto(s)
Fiebre Chikungunya , Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Brasil/epidemiología , Fiebre Chikungunya/epidemiología , Estudios Transversales , Humanos , Filogenia , Estudios Retrospectivos , Adulto Joven , Virus Zika/genética , Infección por el Virus Zika/epidemiología
6.
FASEB J ; 34(12): 16034-16048, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33047385

RESUMEN

Inorganic arsenic (iAs/As2 O32- ) is an environmental toxicant found in watersheds around the world including in densely populated areas. iAs is a class I carcinogen known to target the skin, lungs, bladder, and digestive organs, but its role as a primary breast carcinogen remains controversial. Here, we examined a different possibility: that exposure to iAs promotes the transition of well-differentiated epithelial breast cancer cells characterized by estrogen and progesterone receptor expression (ER+/PR+), to more basal phenotypes characterized by active proliferation, and propensity to metastasis in vivo. Our results indicate two clear phenotypic responses to low-level iAs that depend on the duration of the exposure. Short-term pulses of iAs activate ER signaling, consistent with its reported pseudo-estrogen activity, but longer-term, chronic treatments for over 6 months suppresses both ER and PR expression and signaling. In fact, washout of these chronically exposed cells for up to 1 month failed to fully reverse the transcriptional and phenotypic effects of prolonged treatments, indicating durable changes in cellular physiologic identity. RNA-seq studies found that chronic iAs drives the transition toward more basal phenotypes characterized by impaired hormone receptor signaling despite the conservation of estrogen receptor expression. Because treatments for breast cancer patients are largely designed based on the detection of hormone receptor expression, our results suggest greater scrutiny of ER+ cancers in patients exposed to iAs, because these tumors may spawn more aggressive phenotypes than unexposed ER+ tumors, in particular, basal subtypes that tend to develop therapy resistance and metastasis.


Asunto(s)
Arsénico/fisiología , Neoplasias de la Mama/inducido químicamente , Neoplasias de la Mama/patología , Mama/efectos de los fármacos , Mama/patología , Animales , Mama/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptor ErbB-2/metabolismo , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/metabolismo , Transducción de Señal/efectos de los fármacos
7.
PLoS Pathog ; 16(8): e1008699, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32764827

RESUMEN

São Paulo, a densely inhabited state in southeast Brazil that contains the fourth most populated city in the world, recently experienced its largest yellow fever virus (YFV) outbreak in decades. YFV does not normally circulate extensively in São Paulo, so most people were unvaccinated when the outbreak began. Surveillance in non-human primates (NHPs) is important for determining the magnitude and geographic extent of an epizootic, thereby helping to evaluate the risk of YFV spillover to humans. Data from infected NHPs can give more accurate insights into YFV spread than when using data from human cases alone. To contextualise human cases, identify epizootic foci and uncover the rate and direction of YFV spread in São Paulo, we generated and analysed virus genomic data and epizootic case data from NHPs in São Paulo. We report the occurrence of three spatiotemporally distinct phases of the outbreak in São Paulo prior to February 2018. We generated 51 new virus genomes from YFV positive cases identified in 23 different municipalities in São Paulo, mostly sampled from NHPs between October 2016 and January 2018. Although we observe substantial heterogeneity in lineage dispersal velocities between phylogenetic branches, continuous phylogeographic analyses of generated YFV genomes suggest that YFV lineages spread in São Paulo at a mean rate of approximately 1km per day during all phases of the outbreak. Viral lineages from the first epizootic phase in northern São Paulo subsequently dispersed towards the south of the state to cause the second and third epizootic phases there. This alters our understanding of how YFV was introduced into the densely populated south of São Paulo state. Our results shed light on the sylvatic transmission of YFV in highly fragmented forested regions in São Paulo state and highlight the importance of continued surveillance of zoonotic pathogens in sentinel species.


Asunto(s)
Genoma Viral , Enfermedades de los Primates/virología , Fiebre Amarilla/veterinaria , Fiebre Amarilla/virología , Virus de la Fiebre Amarilla/genética , Zoonosis/virología , Animales , Brasil/epidemiología , Brotes de Enfermedades , Genómica , Humanos , Filogenia , Filogeografía , Enfermedades de los Primates/epidemiología , Enfermedades de los Primates/transmisión , Primates/virología , Fiebre Amarilla/epidemiología , Fiebre Amarilla/transmisión , Virus de la Fiebre Amarilla/clasificación , Virus de la Fiebre Amarilla/aislamiento & purificación , Zoonosis/epidemiología , Zoonosis/transmisión
8.
PLoS Negl Trop Dis ; 14(8): e0008405, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32780745

RESUMEN

Yellow fever virus (YFV) causes a clinical syndrome of acute hemorrhagic hepatitis. YFV transmission involves non-human primates (NHP), mosquitoes and humans. By late 2016, Brazil experienced the largest YFV outbreak of the last 100 years, with 2050 human confirmed cases, with 681 cases ending in death and 764 confirmed epizootic cases in NHP. Among affected areas, Bahia state in Northeastern was the only region with no autochthonous human cases. By using next generation sequence approach, we investigated the molecular epidemiology of YFV in NHP in Bahia and discuss what factors might have prevented human cases. We investigated 47 YFV positive tissue samples from NHP cases to generate 8 novel YFV genomes. ML phylogenetic tree reconstructions and automated subtyping tools placed the newly generated genomes within the South American genotype I (SA I). Our analysis revealed that the YFV genomes from Bahia formed two distinct well-supported phylogenetic clusters that emerged most likely of an introduction from Minas Gerais and Espírito Santo states. Vegetation coverage analysis performed shows predominantly low to medium vegetation coverage in Bahia state. Together, our findings support the hypothesis of two independent YFV SA-I introductions. We also highlighted the effectiveness of the actions taken by epidemiological surveillance team of the state to prevented human cases.


Asunto(s)
Enfermedades de los Primates/virología , Fiebre Amarilla/veterinaria , Virus de la Fiebre Amarilla/genética , Alouatta , Animales , Brasil/epidemiología , Callithrix , Ecosistema , Genoma Viral , Humanos , Filogenia , Fiebre Amarilla/epidemiología , Fiebre Amarilla/prevención & control , Fiebre Amarilla/transmisión , Virus de la Fiebre Amarilla/clasificación
9.
Emerg Microbes Infect ; 9(1): 1824-1834, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32726185

RESUMEN

The recent emergence of a coronavirus (SARS-CoV-2), first identified in the Chinese city of Wuhan in December 2019, has had major public health and economic consequences. Although 61,888 confirmed cases were reported in Brazil by 28 April 2020, little is known about the SARS-CoV-2 epidemic in this country. To better understand the recent epidemic in the second most populous state in southeast Brazil - Minas Gerais (MG) - we sequenced 40 complete SARS-CoV-2 genomes from MG cases and examined epidemiological data from three Brazilian states. Both the genome analyses and the geographical distribution of reported cases indicate for multiple independent introductions into MG. Epidemiological estimates of the reproductive number (R) using different data sources and theoretical assumptions suggest the potential for sustained virus transmission despite a reduction in R from the first reported case to the end of April 2020. The estimated date of SARS-CoV-2 introduction into Brazil was consistent with epidemiological data from the first case of a returned traveller from Lombardy, Italy. These findings highlight the nature of the COVID-19 epidemic in MG and reinforce the need for real-time and continued genomic surveillance strategies to better understand and prepare for the epidemic spread of emerging viral pathogens..


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Genoma Viral , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Adulto , Anciano , Brasil/epidemiología , COVID-19 , Femenino , Geografía , Humanos , Masculino , Persona de Mediana Edad , Pandemias , SARS-CoV-2 , Secuenciación Completa del Genoma , Adulto Joven
11.
Mem Inst Oswaldo Cruz ; 115: e190423, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32428189

RESUMEN

BACKGROUND Despite efforts to mitigate the impact of dengue virus (DENV) epidemics, the virus remains a public health problem in tropical and subtropical regions around the world. Most DENV cases in the Americas between January and July 2019 were reported in Brazil. São Paulo State in the southeast of Brazil has reported nearly half of all DENV infections in the country. OBJECTIVES To understand the origin and dynamics of the 2019 DENV outbreak. METHODS Here using portable nanopore sequencing we generated20 new DENV genome sequences from viremic patients with suspected dengue infection residing in two of the most-affected municipalities of São Paulo State, Araraquara and São José do Rio Preto. We conducted a comprehensive phylogenetic analysis with 1,630 global DENV strains to better understand the evolutionary history of the DENV lineages that currently circulate in the region. FINDINGS The new outbreak strains were classified as DENV2 genotype III (American/Asian genotype). Our analysis shows that the 2019 outbreak is the result of a novel DENV lineage that was recently introduced to Brazil from the Caribbean region. Dating phylogeographic analysis suggests that DENV2-III BR-4 was introduced to Brazil in or around early 2014, possibly from the Caribbean region. MAIN CONCLUSIONS Our study describes the early detection of a newly introduced and rapidly-expanding DENV2 virus lineage in Brazil.


Asunto(s)
Virus del Dengue/genética , Dengue/virología , Variación Genética , Genómica , Brasil , Genotipo , Humanos , Filogenia , ARN Viral/genética
12.
Cell Rep ; 30(7): 2275-2283.e7, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32075736

RESUMEN

Zika virus (ZIKV) has caused an explosive epidemic linked to severe clinical outcomes in the Americas. As of June 2018, 4,929 ZIKV suspected infections and 46 congenital syndrome cases had been reported in Manaus, Amazonas, Brazil. Although Manaus is a key demographic hub in the Amazon region, little is known about the ZIKV epidemic there, in terms of both transmission and viral genetic diversity. Using portable virus genome sequencing, we generated 59 ZIKV genomes in Manaus. Phylogenetic analyses indicated multiple introductions of ZIKV from northeastern Brazil to Manaus. Spatial genomic analysis of virus movement among six areas in Manaus suggested that populous northern neighborhoods acted as sources of virus transmission to other neighborhoods. Our study revealed how the ZIKV epidemic was ignited and maintained within the largest urban metropolis in the Amazon. These results might contribute to improving the public health response to outbreaks in Brazil.


Asunto(s)
Infección por el Virus Zika/virología , Virus Zika/genética , Brasil/epidemiología , Monitoreo Epidemiológico , Femenino , Genómica/métodos , Humanos , Masculino , Infección por el Virus Zika/epidemiología
13.
PLoS One ; 15(1): e0226098, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31914137

RESUMEN

The chikungunya East/Central/South/Africa virus lineage (CHIKV-ECSA) was first detected in Brazil in the municipality of Feira de Santana (FS) by mid 2014. Following that, a large number of CHIKV cases have been notified in FS, which is the second-most populous city in Bahia state, northeastern Brazil, and plays an important role on the spread to other Brazilian states due to climate conditions and the abundance of competent vectors. To better understand CHIKV dynamics in Bahia state, we generated 5 complete genome sequences from a local outbreak raised in Serraria Brasil, a neighbourhood in FS, by next-generation sequencing using Illumina approach. Phylogenetic reconstructions revealed that the new FS genomes belongs to the ECSA genotype and falls within a single strongly supported monophyletic clade that includes other older CHIKV sequences from the same location, suggesting the persistence of the virus during distinct epidemic seasons. We also performed minor variants analysis and found a small number of SNPs per sample (b_29L and e_45SR = 16 SNPs, c_29SR = 29 and d_45PL and f_45FL = 21 SNPs). Out of the 93 SNPs found, 71 are synonymous, 21 are non-synonymous and one generated a stop codon. Although those mutations are not related to the increase of virus replication and/or infectivity, some SNPs were found in non-structural proteins which may have an effect on viral evasion from the mammal immunological system. These findings reinforce the needing of further studies on those variants and of continued genomic surveillance strategies to track viral adaptations and to monitor CHIKV epidemics for improved public health control.


Asunto(s)
Fiebre Chikungunya/epidemiología , Virus Chikungunya/genética , Virus Chikungunya/fisiología , Brotes de Enfermedades , Genotipo , Características de la Residencia/estadística & datos numéricos , Clase Social , Adulto , Brasil/epidemiología , Virus Chikungunya/clasificación , Femenino , Humanos , Masculino , Filogenia , Adulto Joven
14.
Front Public Health ; 8: 575536, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33520909

RESUMEN

Antimicrobial resistance (AMR) is a major public health threat of global proportions, which has the potential to lead to approximately ten million deaths per year by 2050. Pressured by this wicked problem, in 2014, the World Health Organization launched a call for member states to share AMR data through the implementation of the Global Antimicrobial Resistance Surveillance System (GLASS), to appropriately scale and monitor the general situation world-widely. In 2017, Brazil joined GLASS and, in 2018, started its own national antimicrobial surveillance program (BR-GLASS) to understand the impact of resistance in the country. We compiled data obtained from the complete routine of three hospitals' microbiology labs during the year of 2018. This pilot data sums up to 200,874 antimicrobial susceptibility test results from 11,347 isolates. It represents 119 different microorganisms recovered from 44 distinct types of clinical samples. Specimens came from patients originating from 301 Brazilian cities, with 4,950 of these isolates from presumed Healthcare-Associated Infections (HAIs) and the other 6,397 community-acquired cases. The female population offered 58% of the collected samples, while the other 42% were of male origin. The urinary tract was the most common topography (6,372/11,347 isolates), followed by blood samples (2,072/11,347). Gram-negative predominated the bacterial isolates: Escherichia coli was the most prevalent in general, representing 4,030 isolates (89.0% of these from the urinary tract). Coagulase-negative Staphylococci were the most prevalent bacteria in blood samples. Besides these two species, the ESKAPE group have consolidated their prevalence. Regarding drug susceptibility results, 141,648 (70.5%) were susceptible, 9,950 (4.9%) intermediate, and 49,276 (24.5%) resistant. Acinetobacter baumannii was the most worrisome microorganism, with 65.3% of the overall antimicrobial susceptibility tests showing resistance, followed by ESBL-producing Klebsiella pneumoniae, with a global resistance rate of 59%. Although this is a pilot project (still limited to one state), this database shows the importance of a nation-wide surveillance program,[153mm][-12mm] Q14 especially considering it already had patients coming from 301 distinct counties and 18 different states. The BR-GLASS Program is an ongoing project that intends to encompass at least 95 hospitals distributed in all five geographical regions in Brazil within the next 5 years.


Asunto(s)
Antibacterianos , Antiinfecciosos , Antibacterianos/farmacología , Brasil/epidemiología , Farmacorresistencia Bacteriana , Femenino , Humanos , Masculino , Proyectos Piloto
15.
J Virol ; 94(1)2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31597773

RESUMEN

The recent reemergence of yellow fever virus (YFV) in Brazil has raised serious concerns due to the rapid dissemination of the virus in the southeastern region. To better understand YFV genetic diversity and dynamics during the recent outbreak in southeastern Brazil, we generated 18 complete and nearly complete genomes from the peak of the epidemic curve from nonhuman primates (NHPs) and human infected cases across the Espírito Santo and Rio de Janeiro states. Genomic sequencing of 18 YFV genomes revealed the estimated timing, source, and likely routes of yellow fever virus transmission and dispersion during one of the largest outbreaks ever registered in Brazil. We showed that during the recent epidemic, YFV was reintroduced from Minas Gerais to the Espírito Santo and Rio de Janeiro states multiple times between 2016 and 2019. The analysis of data from portable sequencing could identify the corridor of spread of YFV. These findings reinforce the idea that continued genomic surveillance strategies can provide information on virus genetic diversity and transmission dynamics that might assist in understanding arbovirus epidemics.IMPORTANCE Arbovirus infections in Brazil, including yellow fever, dengue, zika, and chikungunya, result in considerable morbidity and mortality and are pressing public health concerns. However, our understanding of these outbreaks is hampered by the limited availability of genomic data. In this study, we investigated the genetic diversity and spatial distribution of YFV during the current outbreak by analyzing genomic data from areas in southeastern Brazil not covered by other previous studies. To gain insights into the routes of YFV introduction and dispersion, we tracked the virus by sequencing YFV genomes sampled from nonhuman primates and infected patients from the southeastern region. Our study provides an understanding of how YFV initiates transmission in new Brazilian regions and illustrates that genomics in the field can augment traditional approaches to infectious disease surveillance and control.


Asunto(s)
Brotes de Enfermedades , Genoma Viral , Fiebre Amarilla/epidemiología , Fiebre Amarilla/transmisión , Virus de la Fiebre Amarilla/genética , Aedes/virología , Alouatta/virología , Animales , Brasil/epidemiología , Callithrix/virología , Cebus/virología , Femenino , Variación Genética , Humanos , Incidencia , Leontopithecus/virología , Masculino , Mosquitos Vectores/virología , Filogenia , Filogeografía , Secuenciación Completa del Genoma , Fiebre Amarilla/virología , Virus de la Fiebre Amarilla/clasificación , Virus de la Fiebre Amarilla/aislamiento & purificación , Virus de la Fiebre Amarilla/patogenicidad
16.
Proc Natl Acad Sci U S A ; 116(47): 23534-23541, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31591207

RESUMEN

Mitochondrial superoxide dismutase (SOD2) suppresses tumor initiation but promotes invasion and dissemination of tumor cells at later stages of the disease. The mechanism of this functional switch remains poorly defined. Our results indicate that as SOD2 expression increases acetylation of lysine 68 ensues. Acetylated SOD2 promotes hypoxic signaling via increased mitochondrial reactive oxygen species (mtROS). mtROS, in turn, stabilize hypoxia-induced factor 2α (HIF2α), a transcription factor upstream of "stemness" genes such as Oct4, Sox2, and Nanog. In this sense, our findings indicate that SOD2K68Ac and mtROS are linked to stemness reprogramming in breast cancer cells via HIF2α signaling. Based on these findings we propose that, as tumors evolve, the accumulation of SOD2K68Ac turns on a mitochondrial pathway to stemness that depends on HIF2α and may be relevant for the progression of breast cancer toward poor outcomes.


Asunto(s)
Neoplasias de la Mama/patología , Autorrenovación de las Células/fisiología , Proteínas de Neoplasias/fisiología , Células Madre Neoplásicas/fisiología , Superóxido Dismutasa/fisiología , Acetilación , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Neoplasias de la Mama/metabolismo , Reprogramación Celular , Progresión de la Enfermedad , Femenino , Xenoinjertos , Humanos , Peróxido de Hidrógeno/metabolismo , Células MCF-7 , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/enzimología , Invasividad Neoplásica , Proteínas de Neoplasias/química , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/metabolismo , Superóxido Dismutasa/química
17.
PLoS One ; 14(6): e0217871, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31185030

RESUMEN

The emergence of chikungunya virus (CHIKV) has raised serious concerns due to the virus' rapid dissemination into new geographic areas and the clinical features associated with infection. To better understand CHIKV dynamics in Rio de Janeiro, we generated 11 near-complete genomes by means of real-time portable nanopore sequencing of virus isolates obtained directly from clinical samples. To better understand CHIKV dynamics in Rio de Janeiro, we generated 11 near-complete genomes by means of real-time portable nanopore sequencing of virus isolates obtained directly from clinical samples. Our phylogenetic reconstructions indicated the circulation of the East-Central-South-African (ECSA) lineage in Rio de Janeiro. Time-measured phylogenetic analysis combined with CHIKV notified case numbers revealed the ECSA lineage was introduced in Rio de Janeiro around June 2015 (95% Bayesian credible interval: May to July 2015) indicating the virus was circulating unnoticed for 5 months before the first reports of CHIKV autochthonous transmissions in Rio de Janeiro, in November 2015. These findings reinforce that continued genomic surveillance strategies are needed to assist in the monitoring and understanding of arbovirus epidemics, which might help to attenuate public health impact of infectious diseases.


Asunto(s)
Fiebre Chikungunya/genética , Virus Chikungunya/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Adulto , África/epidemiología , Brasil/epidemiología , Fiebre Chikungunya/epidemiología , Fiebre Chikungunya/transmisión , Femenino , Humanos , Masculino , Persona de Mediana Edad
18.
Euro Surveill ; 24(2)2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30646975

RESUMEN

We report an ongoing measles outbreak in Manaus, Amazonas state, Brazil. As at 3 November 2018, 1,631 cases were confirmed corresponding to an incidence of 75.3 per 100,000 inhabitants; all five sanitary districts presented confirmed cases. Reintroduction of measles virus in Manaus is likely related to the current outbreak in Venezuela and due to recent decline in measles vaccine coverage. Given the current scenario, prevention and control measures should target individuals aged 15-29 years.


Asunto(s)
Notificación de Enfermedades/estadística & datos numéricos , Brotes de Enfermedades , Inmunización/estadística & datos numéricos , Vacuna Antisarampión/administración & dosificación , Virus del Sarampión/aislamiento & purificación , Sarampión/epidemiología , Cobertura de Vacunación/estadística & datos numéricos , Adolescente , Adulto , Brasil/epidemiología , Niño , Preescolar , Femenino , Humanos , Programas de Inmunización , Lactante , Masculino , Sarampión/diagnóstico , Sarampión/prevención & control , Virus del Sarampión/genética , Virus del Sarampión/inmunología , Persona de Mediana Edad , Venezuela/epidemiología , Adulto Joven
19.
Int J Mol Sci ; 18(9)2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28858203

RESUMEN

Only a small proportion of women who are exposed to infection with high-risk human papillomavirus (HR-HPV) progress to persistent infection and develop cervical cancer (CC). The immune response and genetic background of the host may affect the risk of progression from a HR-HPV infection to lesions and cancer. However, to our knowledge, no studies has been conducted to evaluate the relationship between variability of human leukocyte antigens (HLA) genes and serum cytokine expression in this pathology. In the current study, we examined the associations of HLA alleles and haplotypes including Class I (HLA-A, -B and -C) and II (HLA-DRB1, -DQA1 and -DQB1) with serum levels of cytokines interleukin (IL)-6, tumor necrosis factor-α (TNF-α), IL-10 and IL-17 as well as risks of HPV infections, lesions and CC among admixed Brazilian women. HLA polymorphisms were associated with an increased risk or protection from HPV, lesions and CC. Additionally, we demonstrated a potential association of a HLA class I haplotype (HLA-B*14-C*08) with higher IL-10 cytokine serum levels in cervical disease, suggesting an association between HLA class I and specific cytokines in cervical carcinogenesis. However, larger studies with detailed HPV types coupled with genetic data are needed to further evaluate the effects of HLA and CC by HPV genotype.


Asunto(s)
Citocinas/sangre , Antígenos HLA/genética , Proteínas de Neoplasias , Infecciones por Papillomavirus , Polimorfismo Genético , Neoplasias del Cuello Uterino , Adolescente , Adulto , Anciano , Citocinas/genética , Femenino , Humanos , Persona de Mediana Edad , Proteínas de Neoplasias/sangre , Proteínas de Neoplasias/genética , Infecciones por Papillomavirus/sangre , Neoplasias del Cuello Uterino/sangre , Neoplasias del Cuello Uterino/genética
20.
Asian Pac J Cancer Prev ; 17(7): 3637-41, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27510023

RESUMEN

To determine the prevalence of human papillomavirus (HPV) among women with atypical squamous cells of undetermined significance (ASC-US) referred to colposcopy and the implications for clinical management in low- and middle-income countries (LMIC), the present study was conducted. We included 200 women living in Maringa÷Brazil referred to colposcopy service between August 2012 and March 2013 due to an abnormal cytology from ASC-US until high-grade intraepithelial lesion (HSIL). HPV was detected and genotyped by polymerase chain reaction (PCR). The mean age was 36.8±10.5 years, and women with and without ASC-US had similar mean ages (37.4±11.5 and 36.4±9.96 years, respectively). The highest prevalence of ASC-US occurred at 20-24 years (40%). HPV-DNA was positive in 164 (82.0%) women.Of the 57 women with ASC-US, 30 (52.6%) were HPV-DNA-positive and 21 (70%) were high-risk HPV-positive (HR-HPV); the latter was similar to women without ASC-US (76.9%) but with other abnormal cytological findings present. Our data demonstrated that performing tests for HR-HPV can be used for management of women with ASC-US to support the decision of which women should be referred for an immediate or later colposcopy. The same conclusions can be applied to other LMICs for which HPV testing for primary screening has not been adopted.


Asunto(s)
Células Escamosas Atípicas del Cuello del Útero/patología , Células Escamosas Atípicas del Cuello del Útero/virología , Papillomaviridae/genética , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Adulto , Brasil , Colposcopía/métodos , ADN Viral/genética , Femenino , Genotipo , Humanos , Persona de Mediana Edad , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/virología , Frotis Vaginal/métodos , Adulto Joven , Displasia del Cuello del Útero/patología , Displasia del Cuello del Útero/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA