RESUMEN
Environmental enrichment (EE) is a paradigm that offers the animal a plethora of stimuli, including physical, cognitive, sensory, and social enrichment. Exposure to EE can modulate both anxiety responses and plasma corticosterone. In this study, our objective was to explore how chronic unpredictable stress (CUS) impacts anxiety-related behaviors in male Swiss mice raised in EE conditions. Additionally, we investigated corticosterone and adrenocorticotropic hormone (ACTH) levels to assess the involvement of the hypothalamic-pituitary-adrenal (HPA) axis in mediating these responses. Mice were housed under either EE or standard housing conditions for 21 days. Afterward, they were exposed to 11 days of CUS while still reared in their distinct housing conditions, with half of the mice receiving daily pretreatment with the vehicle and the other half receiving daily metyrapone (MET) injections, an inhibitor of steroid synthesis, 30 mins before CUS exposure. Blood samples were obtained to assess plasma corticosterone and ACTH levels. The 11-day CUS protocol induced anxiety-like phenotype and elevated ACTH levels in EE mice. Chronic MET pretreatment prevented anxiety-like behavior in the EE-CUS groups, by mechanisms involving increased plasma corticosterone levels and decreased ACTH. These results suggest a role of the HPA axis in the mechanism underlying the anxiogenic phenotype induced by CUS in EE mice and shed light on the complex interplay between environmental factors, stress, and the HPA axis in anxiety regulation.
Asunto(s)
Hormona Adrenocorticotrópica , Ansiedad , Corticosterona , Ambiente , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Estrés Psicológico , Animales , Masculino , Sistema Hipotálamo-Hipofisario/metabolismo , Ratones , Sistema Hipófiso-Suprarrenal/metabolismo , Estrés Psicológico/metabolismo , Hormona Adrenocorticotrópica/sangre , Corticosterona/sangre , Metirapona/farmacología , Conducta Animal/fisiología , Vivienda para Animales , Aprendizaje por Laberinto/fisiologíaRESUMEN
The purpose of this study is to evaluate the effects of Methylphenidate exposure on mice odontogenesis and connect them by bioinformatics with human odontogenesis. Thirty-two pregnant Swiss mice were divided into treated group and control group, which received, respectively, 5 mg/kg of Methylphenidate and saline solution from the 5th to the 17th day of pregnancy. The mouse embryos tooth germs were analyzed through optical microscopy, and the data collected were analyzed statistically by Fisher's exact test. The presence and similarity of Methylphenidate-associated genes (Pharmgkb database) in both organisms and their interaction with dental development genes (AmiGO2 database) were verified on STRING database. Rates of tooth germ malformations were higher in treated than in control group (Control: 18; Treated: 27; p = 0.035). Mouse embryo malformations were connected with 238 interactions between 69 dental development genes with 35 Methylphenidate genes. Fourteen interactions for four Methylphenidate genes with four dental development genes, with human experimental data, were connected with mouse phenotype data. By homology, the interactions and conservation of proteins/genes may indicate similar outcomes for both organisms. The exposure to Methylphenidate during pregnancy affected odontogenesis in mouse embryos and may affect human odontogenesis. The study of malformations in mice, with a bioinformatics approach, could contribute to understanding of the Methylphenidate effect on embryo development. These results may provide novel hypotheses for further testing and reinforce the FDA protocol: as Methylphenidate is included in category C, its use during pregnancy should be considered if the benefits outweigh the risks.