Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Genet Genomics ; 50(6): 434-446, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36681271

RESUMEN

Genetic variation is a key factor influencing cytokine production capacity, but which genetic loci regulate cytokine production before and after vaccination, particularly in African population is unknown. Here, we aimed to identify single-nucleotide polymorphisms (SNPs) controlling cytokine responses after microbial stimulation in infants of West-African ancestry, comprising of low-birth-weight neonates randomized to bacillus Calmette-Guérin (BCG) vaccine-at-birth or to the usual delayed BCG. Genome-wide cytokine cytokine quantitative trait loci (cQTL) mapping revealed 12 independent loci, of which the LINC01082-LINC00917 locus influenced more than half of the cytokine-stimulation pairs assessed. Furthermore, nine distinct cQTLs were found among infants randomized to BCG. Functional validation confirmed that several complement genes affect cytokine response after BCG vaccination. We observed a limited overlap of common cQTLs between the West-African infants and cohorts of Western European individuals. These data reveal strong population-specific genetic effects on cytokine production and may indicate new opportunities for therapeutic intervention and vaccine development in African populations.


Asunto(s)
Vacuna BCG , Citocinas , Recién Nacido , Lactante , Humanos , Niño , Vacuna BCG/genética , Citocinas/genética , África Occidental , Vacunación
2.
Front Immunol ; 12: 720090, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434199

RESUMEN

Male sex and old age are risk factors for COVID-19 severity, but the underlying causes are unknown. A possible explanation for this might be the differences in immunological profiles in males and the elderly before the infection. With this in mind, we analyzed the abundance of circulating proteins and immune populations associated with severe COVID-19 in 2 healthy cohorts. Besides, given the seasonal profile of COVID-19, the seasonal response against SARS-CoV-2 could also be different in the elderly and males. Therefore, PBMCs of female, male, young, and old subjects in different seasons of the year were stimulated with heat-inactivated SARS-CoV-2 to investigate the season-dependent anti-SARS-CoV-2 immune response. We found that several T cell subsets, which are known to be depleted in severe COVID-19 patients, were intrinsically less abundant in men and older individuals. Plasma proteins increasing with disease severity, including HGF, IL-8, and MCP-1, were more abundant in the elderly and males. Upon in vitro SARS-CoV-2 stimulation, the elderly produced significantly more IL-1RA and had a dysregulated IFNγ response with lower production in the fall compared with young individuals. Our results suggest that the immune characteristics of severe COVID-19, described by a differential abundance of immune cells and circulating inflammatory proteins, are intrinsically present in healthy men and the elderly. This might explain the susceptibility of men and the elderly to SARS-CoV-2 infection.


Asunto(s)
COVID-19/inmunología , Adolescente , Adulto , Factores de Edad , Anciano , Envejecimiento/inmunología , Proteínas Sanguíneas/inmunología , COVID-19/fisiopatología , Estudios de Cohortes , Susceptibilidad a Enfermedades , Femenino , Humanos , Inmunidad Celular , Factores Inmunológicos , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Medición de Riesgo , Estaciones del Año , Factores Sexuales , Subgrupos de Linfocitos T/inmunología , Adulto Joven
3.
Genome Biol ; 22(1): 198, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34229738

RESUMEN

BACKGROUND: Recent studies highlight the role of metabolites in immune diseases, but it remains unknown how much of this effect is driven by genetic and non-genetic host factors. RESULT: We systematically investigate circulating metabolites in a cohort of 500 healthy subjects (500FG) in whom immune function and activity are deeply measured and whose genetics are profiled. Our data reveal that several major metabolic pathways, including the alanine/glutamate pathway and the arachidonic acid pathway, have a strong impact on cytokine production in response to ex vivo stimulation. We also examine the genetic regulation of metabolites associated with immune phenotypes through genome-wide association analysis and identify 29 significant loci, including eight novel independent loci. Of these, one locus (rs174584-FADS2) associated with arachidonic acid metabolism is causally associated with Crohn's disease, suggesting it is a potential therapeutic target. CONCLUSION: This study provides a comprehensive map of the integration between the blood metabolome and immune phenotypes, reveals novel genetic factors that regulate blood metabolite concentrations, and proposes an integrative approach for identifying new disease treatment targets.


Asunto(s)
Inmunidad Innata/genética , Redes y Vías Metabólicas/genética , Fenotipo , Sitios de Carácter Cuantitativo , Adolescente , Adulto , Anciano , Alanina/sangre , Alanina/inmunología , Ácido Araquidónico/sangre , Ácido Araquidónico/inmunología , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Genómica/métodos , Ácido Glutámico/sangre , Ácido Glutámico/inmunología , Voluntarios Sanos , Humanos , Masculino , Redes y Vías Metabólicas/inmunología , Metabolómica/métodos , Persona de Mediana Edad
4.
Immunology ; 163(2): 155-168, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33454989

RESUMEN

The endocrine and the immune systems interact by sharing receptors for hormones and cytokines, cross-control and feedback mechanisms. To date, no comprehensive study has assessed the impact of thyroid hormones on immune homeostasis. By studying immune phenotype (cell populations, antibody concentrations, circulating cytokines, adipokines and acute-phase proteins, monocyte-platelet interactions and cytokine production capacity) in two large independent cohorts of healthy volunteers of Western European descent from the Human Functional Genomics Project (500FG and 300BCG cohorts), we identified a crucial role of the thyroid hormone thyroxin (T4) and thyroid-stimulating hormone (TSH) on the homeostasis of lymphocyte populations. TSH concentrations were strongly associated with multiple populations of both effector and regulatory T cells, whereas B-cell populations were significantly associated with free T4 (fT4). In contrast, fT4 and TSH had little impact on myeloid cell populations and cytokine production capacity. Mendelian randomization further supported the role of fT4 for lymphocyte homeostasis. Subsequently, using a genomics approach, we identified genetic variants that influence both fT4 and TSH concentrations and immune responses, and gene set enrichment pathway analysis showed enrichment of fT4-affected gene expression in B-cell function pathways, including the CD40 pathway, further supporting the importance of fT4 in the regulation of B-cell function. In conclusion, we show that thyroid function controls the homeostasis of the lymphoid cell compartment. These findings improve our understanding of the immune responses and open the door for exploring and understanding the role of thyroid hormones in the lymphocyte function during disease.


Asunto(s)
Linfocitos B/inmunología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Tirotropina/metabolismo , Tiroxina/metabolismo , Adolescente , Adulto , Antígenos CD40/metabolismo , Células Cultivadas , Estudios de Cohortes , Femenino , Homeostasis , Humanos , Inmunofenotipificación , Activación de Linfocitos , Masculino , Transducción de Señal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...