Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 290(2011): 20231749, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37989239

RESUMEN

Most vertebrates have one layer of the dim-light active rod photoreceptors. However, multiple rod layers, known as a multibank retina, can be found in over 100 species of fish, including several deep-sea species and one family of nocturnally active reef fish, the Holocentridae. Although seemingly associated with increased photon catch, the function of multibank retinas remained unknown. We used an integrative approach, combining histology, electrophysiology and amino acid sequence analysis, applied to three species of nocturnal reef fishes, two holocentrids with a multibank retina (Neoniphon sammara and Myripristis violacea) and an apogonid with a single rod bank (Ostorhinchus compressus), to determine the sensory advantage of multiple rod layers. Our results showed that fish with multibank retinas have both faster vision and enhanced responses to bright- and dim-light intensities. Faster vision was indicated by higher flicker fusion frequencies during temporal resolution electroretinography as well as faster retinal release rates estimated from their rhodopsin proteins. Enhanced sensitivity was demonstrated by broadened intensity-response curves derived from luminous sensitivity electroretinography. Overall, our findings provide the first functional evidence for enhanced dim-light sensitivity using a multibank retina while also suggesting novel roles for the adaptation in enhancing bright-light sensitivity and the speed of vision.


Asunto(s)
Fotofobia , Visión Ocular , Animales , Retina/fisiología , Peces/fisiología , Luz
2.
Mol Ecol ; 32(1): 167-181, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36261875

RESUMEN

The visual capabilities of fish are optimized for their ecology and light environment over evolutionary time. Similarly, fish vision can adapt to regular changes in light conditions within their lifetime, e.g., ontogenetic or seasonal variation. However, we do not fully understand how vision responds to irregular short-term changes in the light environment, e.g., algal blooms and light pollution. In this study, we investigated the effect of short-term exposure to unnatural light conditions on opsin gene expression and retinal cell densities in juvenile and adult diurnal reef fish (convict surgeonfish; Acanthurus triostegus). Results revealed phenotypic plasticity in the retina across ontogeny, particularly during development. The most substantial differences at both molecular and cellular levels were found under constant dim light, while constant bright light and simulated artificial light at night had a lesser effect. Under dim light, juveniles and adults increased absolute expression of the cone opsin genes, sws2a, rh2c and lws, within a few days and juveniles also decreased densities of cones, inner nuclear layer cells and ganglion cells. These changes potentially enhanced vision under the altered light conditions. Thus, our study suggests that plasticity mainly comes into play when conditions are extremely different to the species' natural light environment, i.e., a diurnal fish in "constant night". Finally, in a rescue experiment on adults, shifts in opsin expression were reverted within 24 h. Overall, our study showed rapid, reversible light-induced changes in the retina of A. triostegus, demonstrating phenotypic plasticity in the visual system of a reef fish throughout life.


Asunto(s)
Luz , Perciformes , Animales , Peces/genética , Visión Ocular/genética , Retina/metabolismo , Perciformes/genética , Opsinas/genética , Opsinas/metabolismo , Opsinas de Bastones/genética
3.
J Exp Biol ; 225(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35929495

RESUMEN

Ontogenetic changes in the habitats and lifestyles of animals are often reflected in their visual systems. Coral reef fishes start life in the shallow open ocean but inhabit the reef as juveniles and adults. Alongside this change in habitat, some species also change lifestyles and become nocturnal. However, it is not fully understood how the visual systems of nocturnal reef fishes develop and adapt to these significant ecological shifts over their lives. Therefore, we used a histological approach to examine visual development in the nocturnal coral reef fish family, Holocentridae. We examined 7 representative species spanning both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes). Pre-settlement larvae showed strong adaptation for photopic vision with high cone densities and had also started to develop a multibank retina (i.e. multiple rod layers), with up to two rod banks present. At reef settlement, holocentrids showed greater adaptation for scotopic vision, with higher rod densities and higher summation of rods onto the ganglion cell layer. By adulthood, they had well-developed scotopic vision with a highly rod-dominated multibank retina comprising 5-17 rod banks and enhanced summation of rods onto the ganglion cell layer. Although the ecological demands of the two subfamilies were similar throughout their lives, their visual systems differed after settlement, with Myripristinae showing more pronounced adaptation for scotopic vision than Holocentrinae. Thus, it is likely that both ecology and phylogeny contribute to the development of the holocentrid visual system.


Asunto(s)
Visión de Colores , Retina , Animales , Arrecifes de Coral , Peces/anatomía & histología , Células Fotorreceptoras Retinianas Conos
4.
J Exp Biol ; 225(17)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35929500

RESUMEN

Developmental changes to the visual systems of animals are often associated with ecological shifts. Reef fishes experience a change in habitat between larval life in the shallow open ocean to juvenile and adult life on the reef. Some species also change their lifestyle over this period and become nocturnal. While these ecological transitions are well documented, little is known about the ontogeny of nocturnal reef fish vision. Here, we used transcriptomics to investigate visual development in 12 representative species from both subfamilies, Holocentrinae (squirrelfishes) and Myripristinae (soldierfishes), in the nocturnal coral reef fish family, Holocentridae. Results revealed that the visual systems of holocentrids are initially well adapted to photopic conditions with pre-settlement larvae having high levels of cone opsin gene expression and a broad cone opsin gene repertoire (8 genes). At reef settlement, holocentrids started to invest more in their scotopic visual system, and compared with adults, showed upregulation of genes involved in cell differentiation/proliferation. By adulthood, holocentrids had well developed scotopic vision with high levels of rod opsin gene expression, reduced cone opsin gene expression and repertoire (1-4 genes) and upregulated phototransduction genes. Finally, although the two subfamilies shared similar ecologies across development, their visual systems diverged after settlement, with Myripristinae investing more in scotopic vision than Holocentrinae. Hence, both ecology and phylogeny are likely to determine the development of the holocentrid visual system.


Asunto(s)
Opsinas de los Conos , Animales , Opsinas de los Conos/metabolismo , Arrecifes de Coral , Peces/fisiología , Expresión Génica , Larva/genética , Larva/metabolismo , Opsinas/genética , Opsinas/metabolismo , Filogenia , Retina/fisiología
5.
J Exp Biol ; 225(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35244167

RESUMEN

Vision is used by animals to find food and mates, avoid predators, defend resources and navigate through complex habitats. Behavioural experiments are essential for understanding animals' perception but are often challenging and time-consuming; therefore, using species that can be trained easily for complex tasks is advantageous. Picasso triggerfish, Rhinecanthus aculeatus, have been used in many behavioural studies investigating vision and navigation. However, little is known about the molecular and anatomical basis of their visual system. We addressed this knowledge gap here and behaviourally tested achromatic and chromatic acuity. In terms of visual opsins, R. aculeatus possessed one rod opsin gene (RH1) and at least nine cone opsins: one violet-sensitive SWS2B gene, seven duplicates of the blue-green-sensitive RH2 gene (RH2A, RH2B, RH2C1-5) and one red-sensitive LWS gene. However, only five cone opsins were expressed: SWS2B expression was consistent, while RH2A, RH2C-1 and RH2C-2 expression varied depending on whether fish were sampled from the field or aquaria. Levels of LWS expression were very low. Using fluorescence in situ hybridisation, we found SWS2B was expressed exclusively in single cones, whereas RH2A and RH2Cs were expressed in opposite double cone members. Anatomical resolution estimated from ganglion cell densities was 6.8 cycles per degree (cpd), which was significantly higher than values obtained from behavioural testing for black-and-white achromatic stimuli (3.9 cpd) and chromatic stimuli (1.7-1.8 cpd). These measures were twice as high as previously reported. This detailed information on their visual system will help inform future studies with this emerging focal species.


Asunto(s)
Opsinas de los Conos , Tetraodontiformes , Animales , Opsinas de los Conos/genética , Opsinas de los Conos/metabolismo , Opsinas/genética , Opsinas/metabolismo , Filogenia , Células Fotorreceptoras Retinianas Conos , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo
6.
J Exp Biol ; 224(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34787303

RESUMEN

Among fishes in the family Poeciliidae, signals such as colour patterns, ornaments and courtship displays play important roles in mate choice and male-male competition. Despite this, visual capabilities in poeciliids are understudied, in particular, visual acuity, the ability to resolve detail. We used three methods to quantify visual acuity in male and female green swordtails (Xiphophorus helleri), a species in which body size and the length of the male's extended caudal fin ('sword') serve as assessment signals during mate choice and agonistic encounters. Topographic distribution of retinal ganglion cells (RGCs) was similar in all individuals and was characterized by areas of high cell densities located centro-temporally and nasally, as well as a weak horizontal streak. Based on the peak density of RGCs in the centro-temporal area, anatomical acuity was estimated to be approximately 3 cycles per degree (cpd) in both sexes. However, a behavioural optomotor assay found significantly lower mean acuity in males (0.8 cpd) than females (3.0 cpd), which was not explained by differences in eye size between males and females. An additional behavioural assay, in which we trained individuals to discriminate striped gratings from grey stimuli of the same mean luminance, also showed lower acuity in males (1-2 cpd) than females (2-3 cpd). Thus, although retinal anatomy predicts identical acuity in males and females, two behavioural assays found higher acuity in females than males, a sexual dimorphism that is rare outside of invertebrates. Overall, our results have implications for understanding how poeciliids perceive visual signals during mate choice and agonistic encounters.


Asunto(s)
Ciprinodontiformes , Caracteres Sexuales , Animales , Ciprinodontiformes/anatomía & histología , Femenino , Humanos , Masculino , Retina/anatomía & histología , Células Ganglionares de la Retina , Agudeza Visual
7.
J Exp Biol ; 224(Pt 1)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33234682

RESUMEN

The visual systems of teleost fishes usually match their habitats and lifestyles. Since coral reefs are bright and colourful environments, the visual systems of their diurnal inhabitants have been more extensively studied than those of nocturnal species. In order to fill this knowledge gap, we conducted a detailed investigation of the visual system of the nocturnal reef fish family Holocentridae. Results showed that the visual system of holocentrids is well adapted to their nocturnal lifestyle with a rod-dominated retina. Surprisingly, rods in all species were arranged into 6-17 well-defined banks, a feature most commonly found in deep-sea fishes, that may increase the light sensitivity of the eye and/or allow colour discrimination in dim light. Holocentrids also have the potential for dichromatic colour vision during the day with the presence of at least two spectrally different cone types: single cones expressing the blue-sensitive SWS2A gene, and double cones expressing one or two green-sensitive RH2 genes. Some differences were observed between the two subfamilies, with Holocentrinae (squirrelfish) having a slightly more developed photopic visual system than Myripristinae (soldierfish). Moreover, retinal topography of both ganglion cells and cone photoreceptors showed specific patterns for each cell type, likely highlighting different visual demands at different times of the day, such as feeding. Overall, their well-developed scotopic visual systems and the ease of catching and maintaining holocentrids in aquaria, make them ideal models to investigate teleost dim-light vision and more particularly shed light on the function of the multibank retina and its potential for dim-light colour vision.


Asunto(s)
Arrecifes de Coral , Retina , Animales , Peces/genética , Células Fotorreceptoras Retinianas Conos , Células Fotorreceptoras Retinianas Bastones
8.
Brain Behav Evol ; 95(2): 58-68, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32818939

RESUMEN

Bats are nocturnal mammals known for their ability to echolocate, yet all bats can see, and most bats of the family Pteropodidae (fruit bats) do not echolocate - instead they rely mainly on vision and olfaction to forage. We investigated whether echolocating bats, given their limited reliance on vision, have poorer spatial resolving power (SRP) than pteropodids and whether tongue click echolocating fruit bats differ from non-echolocating fruit bats in terms of visual performance. We compared the number and distribution of retinal ganglion cells (RGCs) as well as the maximum anatomical SRP derived from these distributions in 4 species of bats: Myotis daubentonii, a laryngeal echolocating bat from the family Vespertilionidae, Rousettus aegyptiacus, a tongue clicking echolocating bat from the family Pteropodidae, and Pteropus alecto and P. poliocephalus, 2 non-echolocating bats (also from the Pteropodidae). We find that all 3 pteropodids have a similar number (≈200,000 cells) and distribution of RGCs and a similar maximum SRP (≈4 cycles/degree). M. daubentonii has fewer (∼6,000 cells) and sparser RGCs than the pteropodids and thus a significantly lower SRP (0.6 cycles/degree). M. daubentonii also differs in terms of the distribution of RGCs by having a unique dorsal area of specialization in the retina. Our findings are consistent with the existing literature and suggest that M. daubentonii likely only uses vision for orientation, while for pteropodids vision is also important for foraging.


Asunto(s)
Quirópteros/anatomía & histología , Quirópteros/fisiología , Ecolocación/fisiología , Células Ganglionares de la Retina/citología , Células Ganglionares de la Retina/fisiología , Percepción Espacial/fisiología , Percepción Visual/fisiología , Animales , Especificidad de la Especie
9.
Semin Cell Dev Biol ; 106: 31-42, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32593517

RESUMEN

Coral reefs are one of the most species rich and colourful habitats on earth and for many coral reef teleosts, vision is central to their survival and reproduction. The diversity of reef fish visual systems arises from variations in ocular and retinal anatomy, neural processing and, perhaps most easily revealed by, the peak spectral absorbance of visual pigments. This review examines the interplay between retinal morphology and light environment across a number of reef fish species, but mainly focusses on visual adaptations at the molecular level (i.e. visual pigment structure). Generally, visual pigments tend to match the overall light environment or micro-habitat, with fish inhabiting greener, inshore waters possessing longer wavelength-shifted visual pigments than open water blue-shifted species. In marine fishes, particularly those that live on the reef, most species have between two (likely dichromatic) to four (possible tetrachromatic) cone spectral sensitivities and a single rod for crepuscular vision; however, most are trichromatic with three spectral sensitivities. In addition to variation in spectral sensitivity number, spectral placement of the absorbance maximum (λmax) also has a surprising degree of variability. Variation in ocular and retinal anatomy is also observed at several levels in reef fishes but is best represented by differences in arrangement, density and distribution of neural cell types across the retina (i.e. retinal topography). Here, we focus on the seven reef fish families most comprehensively studied to date to examine and compare how behaviour, environment, activity period, ontogeny and phylogeny might interact to generate the exceptional diversity in visual system design that we observe.


Asunto(s)
Opsinas/fisiología , Visión Ocular/fisiología , Animales , Arrecifes de Coral , Peces
10.
Semin Cell Dev Biol ; 106: 20-30, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32536437

RESUMEN

The deep-sea is the largest and one of the dimmest habitats on earth. In this extreme environment, every photon counts and may make the difference between life and death for its inhabitants. Two sources of light are present in the deep-sea; downwelling light, that becomes dimmer and spectrally narrower with increasing depth until completely disappearing at around 1000 m, and bioluminescence, the light emitted by animals themselves. Despite these relatively dark and inhospitable conditions, many teleost fish have made the deep-sea their home, relying heavily on vision to survive. Their visual systems have had to adapt, sometimes in astonishing and bizarre ways. This review examines some aspects of the visual system of deep-sea teleosts and highlights the exceptional diversity in both optical and retinal specialisations. We also reveal how widespread several of these adaptations are across the deep-sea teleost phylogeny. Finally, the significance of some recent findings as well as the surprising diversity in visual adaptations is discussed.


Asunto(s)
Inmunoglobulinas/fisiología , Visión Ocular/fisiología , Animales , Proteínas de Peces , Peces
11.
Sci Rep ; 9(1): 16459, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31712572

RESUMEN

Vision plays a major role in the life of most teleosts, and is assumingly well adapted to each species ecology and behaviour. Using a multidisciplinary approach, we scrutinised several aspects of the visual system and ecology of the Great Barrier Reef anemonefish, Amphiprion akindynos, including its orange with white patterning, retinal anatomy and molecular biology, its symbiosis with anemones and sequential hermaphroditism. Amphiprion akindynos possesses spectrally distinct visual pigments and opsins: one rod opsin, RH1 (498 nm), and five cone opsins, SWS1 (370 nm), SWS2B (408 nm), RH2B (498 nm), RH2A (520 nm), and LWS (554 nm). Cones were arranged in a regular mosaic with each single cone surrounded by four double cones. Double cones mainly expressed RH2B (53%) in one member and RH2A (46%) in the other, matching the prevailing light. Single cones expressed SWS1 (89%), which may serve to detect zooplankton, conspecifics and the host anemone. Moreover, a segregated small fraction of single cones coexpressed SWS1 with SWS2B (11%). This novel visual specialisation falls within the region of highest acuity and is suggested to increase the chromatic contrast of Amphiprion akindynos colour patterns, which might improve detection of conspecifics.


Asunto(s)
Ecología , Perciformes/fisiología , Retina/fisiología , Pigmentos Retinianos/fisiología , Anémonas de Mar/fisiología , Animales , Opsinas de los Conos/metabolismo , Filogenia , Células Fotorreceptoras Retinianas Conos/metabolismo , Opsinas de Bastones/metabolismo , Zooplancton/fisiología
12.
J Exp Biol ; 222(Pt 24)2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31776185

RESUMEN

Ontogenetic changes of the visual system are often correlated with shifts in habitat and feeding behaviour of animals. Coral reef fishes begin their lives in the pelagic zone and then migrate to the reef. This habitat transition frequently involves a change in diet and light environment as well as major morphological modifications. The spotted unicornfish, Naso brevirostris, is known to shift diet from zooplankton to algae and back to mainly zooplankton when transitioning from larval to juvenile and then to adult stages. Concurrently, N. brevirostris also moves from an open pelagic to a coral-associated habitat before migrating up in the water column when reaching adulthood. Using retinal mapping techniques, we discovered that the distribution and density of ganglion and photoreceptor cells in N. brevirostris changes primarily during the transition from the larval to the juvenile stage, with only minor modifications thereafter. Similarly, visual gene (opsin) expression based on RNA sequencing, although qualitatively similar between stages (all fish mainly expressed the same three cone opsins; SWS2B, RH2B, RH2A), also showed the biggest quantitative difference when transitioning from larvae to juveniles. The juvenile stage in particular seems mismatched with its reef-associated ecology, which may be due to this stage only lasting a fraction of the lifespan of these fish. Hence, the visual ontogeny found in N. brevirostris is very different from the progressive changes found in other reef fishes, calling for a thorough analysis of visual system development of the reef fish community.


Asunto(s)
Ganglios/crecimiento & desarrollo , Perciformes/crecimiento & desarrollo , Células Fotorreceptoras de Vertebrados/metabolismo , Visión Ocular/fisiología , Vías Visuales/crecimiento & desarrollo , Animales
13.
Science ; 364(6440): 588-592, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31073066

RESUMEN

Vertebrate vision is accomplished through light-sensitive photopigments consisting of an opsin protein bound to a chromophore. In dim light, vertebrates generally rely on a single rod opsin [rhodopsin 1 (RH1)] for obtaining visual information. By inspecting 101 fish genomes, we found that three deep-sea teleost lineages have independently expanded their RH1 gene repertoires. Among these, the silver spinyfin (Diretmus argenteus) stands out as having the highest number of visual opsins in vertebrates (two cone opsins and 38 rod opsins). Spinyfins express up to 14 RH1s (including the most blueshifted rod photopigments known), which cover the range of the residual daylight as well as the bioluminescence spectrum present in the deep sea. Our findings present molecular and functional evidence for the recurrent evolution of multiple rod opsin-based vision in vertebrates.


Asunto(s)
Evolución Molecular , Proteínas de Peces/fisiología , Peces/fisiología , Opsinas de Bastones/fisiología , Visión Ocular/fisiología , Animales , Oscuridad , Proteínas de Peces/clasificación , Proteínas de Peces/genética , Peces/genética , Variación Genética , Genoma , Filogenia , Opsinas de Bastones/clasificación , Opsinas de Bastones/genética , Visión Ocular/genética
14.
J Fish Biol ; 95(1): 5-38, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30357835

RESUMEN

Many fishes, both freshwater or marine, have colour vision that may outperform humans. As a result, to understand the behavioural tasks that vision enables; including mate choice, feeding, agonistic behaviour and camouflage, we need to see the world through a fish's eye. This includes quantifying the variable light environment underwater and its various influences on vision. As well as rapid loss of light with depth, light attenuation underwater limits visual interaction to metres at most and in many instances, less than a metre. We also need to characterize visual sensitivities, fish colours and behaviours relative to both these factors. An increasingly large set of techniques over the past few years, including improved photography, submersible spectrophotometers and genetic sequencing, have taken us from intelligent guesswork to something closer to sensible hypotheses. This contribution to the special edition on the Ecology of Fish Senses under a shifting environment first reviews our knowledge of fish colour vision and visual ecology, past, present and very recent, and then goes on to examine how climate change may impinge on fish visual capability. The review is limited to mostly colour vision and to mostly reef fishes. This ignores a large body of work, both from other marine environments and freshwater systems, but the reef contains examples of many of the challenges to vision from the aquatic environment. It is also a concentrate of life, perhaps the most specious and complex on earth, suffering now catastrophically from the consequences of our lack of action on climate change. A clear course of action to prevent destruction of this habitat is the need to spend more time in it, in the study of it and sharing it with those not fortunate enough to see coral reefs first-hand. Sir David Attenborough on The Great Barrier Reef: "Do we really care so little about the Earth upon which we live that we don't wish to protect one of its greatest wonders from the consequences of our behaviours?"


Asunto(s)
Visión de Colores , Color , Arrecifes de Coral , Peces/fisiología , Comunicación Animal , Animales , Mimetismo Biológico , Cambio Climático , Ecosistema
15.
Sci Adv ; 3(11): eaao4709, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29134201

RESUMEN

Most vertebrates have a duplex retina comprising two photoreceptor types, rods for dim-light (scotopic) vision and cones for bright-light (photopic) and color vision. However, deep-sea fishes are only active in dim-light conditions; hence, most species have lost their cones in favor of a simplex retina composed exclusively of rods. Although the pearlsides, Maurolicus spp., have such a pure rod retina, their behavior is at odds with this simplex visual system. Contrary to other deep-sea fishes, pearlsides are mostly active during dusk and dawn close to the surface, where light levels are intermediate (twilight or mesopic) and require the use of both rod and cone photoreceptors. This study elucidates this paradox by demonstrating that the pearlside retina does not have rod photoreceptors only; instead, it is composed almost exclusively of transmuted cone photoreceptors. These transmuted cells combine the morphological characteristics of a rod photoreceptor with a cone opsin and a cone phototransduction cascade to form a unique photoreceptor type, a rod-like cone, specifically tuned to the light conditions of the pearlsides' habitat (blue-shifted light at mesopic intensities). Combining properties of both rods and cones into a single cell type, instead of using two photoreceptor types that do not function at their full potential under mesopic conditions, is likely to be the most efficient and economical solution to optimize visual performance. These results challenge the standing paradigm of the function and evolution of the vertebrate duplex retina and emphasize the need for a more comprehensive evaluation of visual systems in general.


Asunto(s)
Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/química , Animales , Arrestina/clasificación , Arrestina/genética , Evolución Biológica , Proteínas de Peces/clasificación , Proteínas de Peces/genética , Peces , Opsinas/clasificación , Opsinas/genética , Filogenia , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/química , Células Fotorreceptoras Retinianas Bastones/metabolismo , Transcriptoma , Transducina/clasificación , Transducina/genética
16.
Philos Trans R Soc Lond B Biol Sci ; 372(1717)2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28193815

RESUMEN

Ecological and behavioural constraints play a major role in shaping the visual system of different organisms. In the mesopelagic zone of the deep- sea, between 200 and 1000 m, very low intensities of downwelling light remain, creating one of the dimmest habitats in the world. This ambient light is, however, enhanced by a multitude of bioluminescent signals emitted by its inhabitants, but these are generally dim and intermittent. As a result, the visual system of mesopelagic organisms has been pushed to its sensitivity limits in order to function in this extreme environment. This review covers the current body of knowledge on the visual system of one of the most abundant and intensely studied groups of mesopelagic fishes: the lanternfish (Myctophidae). We discuss how the plasticity, performance and novelty of its visual adaptations, compared with other deep-sea fishes, might have contributed to the diversity and abundance of this family.This article is part of the themed issue 'Vision in dim light'.


Asunto(s)
Oscuridad , Ojo/anatomía & histología , Peces/fisiología , Visión Ocular , Percepción Visual , Animales , Conducta Alimentaria
17.
J Exp Biol ; 220(Pt 2): 266-277, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27811302

RESUMEN

The distinct behaviours of animals and the varied habitats in which animals live place different requirements on their visual systems. A trade-off exists between resolution and sensitivity, with these properties varying across the retina. Spectral sensitivity, which affects both achromatic and chromatic (colour) vision, also varies across the retina, though the function of this inhomogeneity is less clear. We previously demonstrated spatially varying spectral sensitivity of double cones in the cichlid fish Metriaclima zebra owing to coexpression of different opsins. Here, we map the distributions of ganglion cells and cone cells and quantify opsin coexpression in single cones to show these also vary across the retina. We identify an area centralis with peak acuity and infrequent coexpression, which may be suited for tasks such as foraging and detecting male signals. The peripheral retina has reduced ganglion cell densities and increased opsin coexpression. Modeling of cichlid visual tasks indicates that coexpression might hinder colour discrimination of foraging targets and some fish colours. But, coexpression might improve contrast detection of dark objects against bright backgrounds, which might be useful for detecting predators or zooplankton. This suggests a trade-off between acuity and colour discrimination in the central retina versus lower resolution but more sensitive contrast detection in the peripheral retina. Significant variation in the pattern of coexpression among individuals, however, raises interesting questions about the selective forces at work.


Asunto(s)
Cíclidos/fisiología , Opsinas de los Conos/metabolismo , Proteínas de Peces/metabolismo , Células Fotorreceptoras Retinianas Conos/fisiología , Células Ganglionares de la Retina/fisiología , Percepción Visual , Animales , Cíclidos/genética , Femenino , Masculino , Agudeza Visual
18.
Brain Behav Evol ; 85(2): 77-93, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25766394

RESUMEN

Deep-sea fishes possess several adaptations to facilitate vision where light detection is pushed to its limit. Lanternfishes (Myctophidae), one of the world's most abundant groups of mesopelagic fishes, possess a novel and unique visual specialisation, a sexually dimorphic photostable yellow pigmentation, constituting the first record of a visual sexual dimorphism in any non-primate vertebrate. The topographic distribution of the yellow pigmentation across the retina is species specific, varying in location, shape and size. Spectrophotometric analyses reveal that this new retinal specialisation differs between species in terms of composition and acts as a filter, absorbing maximally between 356 and 443 nm. Microspectrophotometry and molecular analyses indicate that the species containing this pigmentation also possess at least 2 spectrally distinct rod visual pigments as a result of a duplication of the Rh1 opsin gene. After modelling the effect of the yellow pigmentation on photoreceptor spectral sensitivity, we suggest that this unique specialisation acts as a filter to enhance contrast, thereby improving the detection of bioluminescent emissions and possibly fluorescence in the extreme environment of the deep sea. The fact that this yellow pigmentation is species specific, sexually dimorphic and isolated within specific parts of the retina indicates an evolutionary pressure to visualise prey/predators/mates in a particular part of each species' visual field.


Asunto(s)
Peces/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Retina/fisiología , Pigmentos Retinianos/fisiología , Visión Ocular/fisiología , Animales , Evolución Biológica , Femenino , Masculino , Modelos Biológicos , Células Fotorreceptoras de Vertebrados/química , Retina/química , Pigmentos Retinianos/química , Caracteres Sexuales , Especificidad de la Especie , Campos Visuales
19.
Brain Behav Evol ; 84(4): 262-76, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25401391

RESUMEN

Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density). In this study, we investigated the neural cell distribution in the ganglion cell layer of a range of lanternfish species belonging to 10 genera. Analyses were performed on wholemounted retinas using stereology. Topographic maps were constructed of the distribution of all neurons and both ganglion and amacrine cell populations in 5 different species from Nissl-stained retinas using cytological criteria. Amacrine cell distribution was also examined immunohistochemically in 2 of the 5 species using anti-parvalbumin antibody. The distributions of both the total neuron and the amacrine cell populations were aligned in all of the species examined, showing a general increase in cell density toward the retinal periphery. However, when the ganglion cell population was topographically isolated from the amacrine cell population, which comprised up to 80% of the total neurons within the ganglion cell layer, a different distribution was revealed. Topographic maps of the true ganglion cell distribution in 18 species of lanternfishes revealed well-defined specializations in different regions of the retina. Different species possessed distinct areas of high ganglion cell density with respect to both peak density and the location and/or shape of the specialized acute zone (i.e. elongated areae ventro-temporales, areae temporales and large areae centrales). The spatial resolving power was calculated to be relatively low (varying from 1.6 to 4.4 cycles per degree), indicating that myctophids may constitute one of the less visually acute groups of deep-sea teleosts. The diversity in retinal specializations and spatial resolving power within the family is assessed in terms of possible ecological functions and evolutionary history.


Asunto(s)
Peces/fisiología , Células Ganglionares de la Retina/citología , Agudeza Visual/fisiología , Animales , Recuento de Células , Peces/anatomía & histología , Especificidad de la Especie , Campos Visuales/fisiología
20.
PLoS One ; 9(6): e99957, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24927016

RESUMEN

The mesopelagic zone of the deep-sea (200-1000 m) is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence will depend on the visual task and ultimately on the eyes and their capacity for detecting low levels of illumination and intermittent point sources of bioluminescent light. In this study, we investigate the diversity of the visual system of the lanternfish (Myctophidae). We focus specifically on the photoreceptor cells by examining their size, arrangement, topographic distribution and contribution to optical sensitivity in 53 different species from 18 genera. We also examine the influence(s) of both phylogeny and ecology on these photoreceptor variables using phylogenetic comparative analyses in order to understand the constraints placed on the visual systems of this large group of mesopelagic fishes at the first stage of retinal processing. We report great diversity in the visual system of the Myctophidae at the level of the photoreceptors. Photoreceptor distribution reveals clear interspecific differences in visual specialisations (areas of high rod photoreceptor density), indicating potential interspecific differences in interactions with prey, predators and/or mates. A great diversity in photoreceptor design (length and diameter) and density is also present. Overall, the myctophid eye is very sensitive compared to other teleosts and each species seems to be specialised for the detection of a specific signal (downwelling light or bioluminescence), potentially reflecting different visual demands for survival. Phylogenetic comparative analyses highlight several relationships between photoreceptor characteristics and the ecological variables tested (depth distribution and luminous tissue patterns). Depth distribution at night was a significant factor in most of the models tested, indicating that vision at night is of great importance for lanternfishes and may drive the evolution of their photoreceptor design.


Asunto(s)
Ojo/metabolismo , Peces/metabolismo , Células Fotorreceptoras/metabolismo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...