RESUMEN
BACKGROUND: Radiosurgery for multiple brain metastases has been more reported recently without using whole-brain radiotherapy. Nevertheless, the sparsity of the data still claims more information about toxicity and survival and their association with both dosimetric and geometric aspects of this treatment. AIM: To assess the toxicity and survival outcome of radiosurgery in patients with multiple (four or more lesions) brain metastases. METHODS: In a single institution, data were collected retrospectively from patients who underwent radiosurgery to treat brain metastases from diverse primary sites. Patients with 4-21 brain metastases were treated with a single fraction with a dose of 18 Gy or 20 Gy. The clinical variables collected were relevant to toxicity, survival, treatment response, planning, and dosimetric variables. The Spearman's rank correlation coefficients, Mann-Whitney test, Kruskal-Wallis test, and Log-rank test were used according to the type of variable and outcomes. RESULTS: From August 2017 to February 2020, 55 patients were evaluated. Headache was the most common complaint (38.2%). The median overall survival (OS) for patients with karnofsky performance status (KPS) > 70 was 8.9 mo, and this was 3.6 mo for those with KPS ≤ 70 (P = 0.047). Patients with treated lesions had a median progression-free survival of 7.6 mo. There were no differences in OS (19.7 vs 9.5 mo) or progression-free survival (10.6 vs 6.3 mo) based on prior irradiation. There was no correlation found between reported toxicities and planning, dosimetric, and geometric variables, implying that no additional significant toxicity risks appear to be added to the treatment of multiple (four or more) lesions. CONCLUSION: No associations were found between the evaluated toxicities and the planning dosimetric parameters, and no differences in survival rates were detected based on previous treatment status.
RESUMEN
PURPOSE: To evaluate the correlation between dosimetric, geometric, and technical parameters for radiosurgery planning of multiple brain metastasis treatments treated with a linear accelerator with volumetric modulated arc therapy (VMAT) technique. MATERIALS AND METHODS: Data were collected retrospectively from 55 patients who underwent radiosurgery in a single institution from August 2017 to February 2020. Patients presented 4-21 brain metastases were treated with a single fraction with doses between 18 and 20 Gy. Dosimetric variables were collected including V5Gy, V8Gy, V10Gy, V12Gy, V14Gy, conformity index (CI), heterogeneity index (HI), maximum dose (Dmax), and the CI_R50. Geometric variables including the number of lesions, target volumes, the smallest target volume, the largest target volume, and the distance between the isocenter and the most distant lesion (DIL) and technical variables such as the numbers of total arcs, noncoplanar arcs, and isocenters were collected for analysis. RESULTS: The number of lesions had a moderate positive correlation with V5Gy, V8Gy, V10Gy, V12Gy, V14Gy, HI, Dmax, and with the number of total arcs. The target volumes had a positive medium-high correlation with V5Gy, V8Gy, V10Gy, V12Gy, V14Gy, and moderate positive correlation with HI, Dmax, number of arcs and noncoplanar arcs. The CI and CI_R50 had a negative correlation with all volumes related to the target: the target volumes, the smallest, and the largest lesion. A positive correlation was observed between the distance of the isocenter and the most DIL with V5Gy, V8Gy, V10Gy, V12Gy, V14Gy, HI, Dmax, and the number of isocenters. CONCLUSION: It was found that the number of lesions and the target volumes are good predictors of dosimetric indexes of plan evaluation and that the distance between the isocenter and the most DIL harms them.