Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Biol Int ; 48(5): 665-681, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38420868

RESUMEN

Epigenetic changes, particularly histone compaction modifications, have emerged as critical regulators in the epigenetic pathway driving endothelial cell phenotype under constant exposure to laminar forces induced by blood flow. However, the underlying epigenetic mechanisms governing endothelial cell behavior in this context remain poorly understood. To address this knowledge gap, we conducted in vitro experiments using human umbilical vein endothelial cells subjected to various tensional forces simulating pathophysiological blood flow shear stress conditions, ranging from normotensive to hypertensive forces. Our study uncovers a noteworthy observation wherein endothelial cells exposed to high shear stress demonstrate a decrease in the epigenetic marks H3K4ac and H3K27ac, accompanied by significant alterations in the levels of HDAC (histone deacetylase) proteins. Moreover, we demonstrate a negative regulatory effect of increased shear stress on HOXA13 gene expression and a concomitant increase in the expression of the long noncoding RNA, HOTTIP, suggesting a direct association with the suppression of HOXA13. Collectively, these findings represent the first evidence of the role of histone-related epigenetic modifications in modulating chromatin compaction during mechanosignaling of endothelial cells in response to elevated shear stress forces. Additionally, our results highlight the importance of understanding the physiological role of HOXA13 in vascular biology and hypertensive patients, emphasizing the potential for developing small molecules to modulate its activity. These findings warrant further preclinical investigations and open new avenues for therapeutic interventions targeting epigenetic mechanisms in hypertensive conditions.


Asunto(s)
Epigénesis Genética , Histonas , Humanos , Histonas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Hemodinámica , Estrés Mecánico , Células Cultivadas
2.
J Cell Physiol ; 234(5): 6382-6396, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30238981

RESUMEN

Whereas endothelial responses to shear stress are well-characterized, the cell physiological effects of shear stress in smooth muscle cells (SMCs) remain largely obscure. As SMCs are directly challenged by shear stress after endothelial denuding injury following procedures such as angioplasty or endarterectomy, characterization of these responses represents an important scientific question. Hence we decided to contrast cytoskeletal reorganization, epigenetic reprogramming, signaling transduction, and changes in miRNA (miRs) profiles in primary human aortic smooth muscle cells (AoSMCs) between unstressed cells and cells exposed to shear stress. We observed that shear stress-provoked reorganization of the actin cytoskeleton in an apparently Cofilin-dependent fashion and which related to altered integrin signaling, apparently caused by remodeling of the extracellular matrix. The latter appeared a downstream effect of increased expression of matrix metalloproteinases and downregulation of tissue metalloproteinase inhibitor 1 (TIMP1) protein levels. In turn, these effects related to shear stress-provoked changes in expression and nuclear localization of the epigenetic regulators demethylases TET1, TET2, DNMT1, DNMT3A and DNMT3B, HDAC6, and SIRT1. Accordingly, TIMP1 promotor CpG hypomethylation was a prominent effect, and resulted in a significant increase in TIMP1 transcription, which may also have related increased expression of miRs involved in modulating TIMP1 translation. Thus epigenetic-reprogramming of TIMP1 emerges as critical element in smooth muscle responses to mechanical signals and as epigenetic machinery is amendable to pharmacological manipulation, this pathway may have important clinical consequences.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Adaptación Fisiológica/fisiología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Línea Celular , Epigénesis Genética , Humanos , Estrés Mecánico
3.
Mol Cell Endocrinol ; 478: 151-167, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30142372

RESUMEN

We therefore investigated whether there is synergism between triiodothyronine (T3) hormone and trophic molecules released from mechanically-stressed endothelial cells (EC-enriched medium) in osteogenic phenotype by mapping classical repertory of genes. Although there are studies reporting the efficiency of T3 hormone on bone cells, it is scarce considering their effect in conjunction with other physiologically active molecules, such as those released by the active endothelial cells. To address this issue, human bone marrow-derived mesenchymal stem cells (hBMSCs) were treated with EC-enriched medium subjected to shear-stress up to 72 h in vitro, in conjunction or not with T3 hormone. Although our results found an important synergism considering these parameters on modulating key bone-related gene markers, such as on the alkaline phosphatase (ALP) behavior (at both mRNA and protein content), contributing for osteoblast differentiation, important genes such as OSTERIX and RUNX2 were significantly down-expressed, while a over-expression of RANKL was found when the conjunction effect of T3 and endothelial paracrine signaling was considered. In addition, T3 hormone over expressed both OCT4 and NANOG genes in a DNA epigenetic-independent manner. However, we observed a dynamic reprogramming of DNMT1, DNMT3A, DNMT3B and TET1, important DNA-related epigenetic markers. Specifically, T3 hormone alone up-modulated TET2 transcripts profile. Complimentarily, expression of microRNA (miRs) processing-related genes also was modulated, as well as miR-10b, miR-22, miR-21, miR-143 and miR-145 transcriptional related profiles. Altogether, our results suggested a positive effect of mechanically-stressed endothelial cells-induced paracrine signaling on T3 hormone-obtaining osteogenic phenotype, contributing to understanding the paradoxal effect of T3 hormone on the bone physiology.


Asunto(s)
Células Endoteliales/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/efectos de los fármacos , Comunicación Paracrina , Transducción de Señal , Estrés Mecánico , Triyodotironina/farmacología , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Células Endoteliales/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Matriz Extracelular/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ligandos , MicroARNs/metabolismo , Minerales/metabolismo , Comunicación Paracrina/efectos de los fármacos , Fenotipo , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...