Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbes Infect ; : 105400, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069117

RESUMEN

Infection by SARS-CoV-2 is associated with uncontrolled inflammatory response during COVID-19 severe disease, in which monocytes are one of the main sources of pro-inflammatory mediators leading to acute respiratory distress syndrome. Extracellular vesicles (EVs) from different cells play important roles during SARS-CoV-2 infection, but investigations describing the involvement of EVs from primary human monocyte-derived macrophages (MDM) on the regulation of this infection are not available. Here, we describe the effects of EVs released by MDM stimulated with the neuropeptides VIP and PACAP on SARS-CoV-2-infected monocytes. MDM-derived EVs were isolated by differential centrifugation of medium collected from cells cultured for 24 h in serum-reduced conditions. Based on morphological properties, we distinguished two subpopulations of MDM-EVs, namely large (LEV) and small EVs (SEV). We found that MDM-derived EVs stimulated with the neuropeptides inhibited SARS-CoV-2 RNA synthesis/replication in monocytes, protected these cells from virus-induced cytopathic effects and reduced the production of pro-inflammatory mediators. In addition, EVs derived from VIP- and PACAP-treated MDM prevented the SARS-CoV-2-induced NF-κB activation. Overall, our findings suggest that MDM-EVs are endowed with immunoregulatory properties that might contribute to the antiviral and anti-inflammatory responses in SARS-CoV-2-infected monocytes and expand our knowledge of EV effects during COVID-19 pathogenesis.

2.
Front Cell Infect Microbiol ; 13: 1067285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875528

RESUMEN

Introduction: Influenza A virus (IAV) is one of the leading causes of respiratory tract infections in humans, representing a major public health concern. The various types of cell death have a crucial role in IAV pathogenesis because this virus may trigger both apoptosis and necroptosis in airway epithelial cells in parallel. Macrophages play an important role in the clearance of virus particles, priming the adaptive immune response in influenza. However, the contribution of macrophage death to pathogenesis of IAV infection remains unclear. Methods: In this work, we investigated IAV-induced macrophage death, along with potential therapeutic intervention. We conducted in vitro and in vivo experiments to evaluate the mechanism and the contribution of macrophages death to the inflammatory response induced by IAV infection. Results: We found that IAV or its surface glycoprotein hemagglutinin (HA) triggers inflammatory programmed cell death in human and murine macrophages in a Toll-like receptor-4 (TLR4)- and TNF-dependent manner. Anti-TNF treatment in vivo with the clinically approved drug etanercept prevented the engagement of the necroptotic loop and mouse mortality. Etanercept impaired the IAV-induced proinflammatory cytokine storm and lung injury. Conclusion: In summary, we demonstrated a positive feedback loop of events that led to necroptosis and exacerbated inflammation in IAV-infected macrophages. Our results highlight an additional mechanism involved in severe influenza that could be attenuated with clinically available therapies.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Animales , Ratones , Etanercept , Inhibidores del Factor de Necrosis Tumoral , Apoptosis , Macrófagos
3.
Int J Biol Macromol ; 222(Pt A): 1015-1026, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36183752

RESUMEN

Despite the fast development of vaccines, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still circulates through variants of concern (VoC) and escape the humoral immune response. SARS-CoV-2 has provoked over 200,000 deaths/months since its emergence and only a few antiviral drugs showed clinical benefit up to this moment. Thus, chemical structures endowed with anti-SARS-CoV-2 activity are important for continuous antiviral development and natural products represent a fruitful source of substances with biological activity. In the present study, agathisflavone (AGT), a biflavonoid from Anacardium occidentale was investigated as a candidate anti-SARS-CoV-2 compound. In silico and enzymatic analysis indicated that AGT may target mainly the viral main protease (Mpro) and not the papain-like protease (PLpro) in a non-competitive way. Cell-based assays in type II pneumocytes cell lineage (Calu-3) showed that SARS-CoV-2 is more susceptible to AGT than to apigenin (APG, monomer of AGT), in a dose-dependent manner, with an EC50 of 4.23 ± 0.21 µM and CC50 of 61.3 ± 0.1 µM and with a capacity to inhibit the level of pro-inflammatory mediator tumor necrosis factor-alpha (TNF-α). These results configure AGT as an interesting chemical scaffold for the development of novel semisynthetic antivirals against SARS-CoV-2.


Asunto(s)
Biflavonoides , Tratamiento Farmacológico de COVID-19 , Humanos , SARS-CoV-2 , Proteasas 3C de Coronavirus , Biflavonoides/farmacología , Péptido Hidrolasas , Antivirales/química , Inhibidores de Proteasas/química
4.
J Leukoc Biol ; 111(5): 1107-1121, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35322471

RESUMEN

Infection by SARS-CoV-2 may elicit uncontrolled and damaging inflammatory responses. Thus, it is critical to identify compounds able to inhibit virus replication and thwart the inflammatory reaction. Here, we show that the plasma levels of the immunoregulatory neuropeptide VIP are elevated in patients with severe COVID-19, correlating with reduced inflammatory mediators and with survival on those patients. In vitro, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP), highly similar neuropeptides, decreased the SARS-CoV-2 RNA content in human monocytes and viral production in lung epithelial cells, also reducing cell death. Both neuropeptides inhibited the production of proinflammatory mediators in lung epithelial cells and in monocytes. VIP and PACAP prevented in monocytes the SARS-CoV-2-induced activation of NF-kB and SREBP1 and SREBP2, transcriptions factors involved in proinflammatory reactions and lipid metabolism, respectively. They also promoted CREB activation, a transcription factor with antiapoptotic activity and negative regulator of NF-kB. Specific inhibition of NF-kB and SREBP1/2 reproduced the anti-inflammatory, antiviral, and cell death protection effects of VIP and PACAP. Our results support further clinical investigations of these neuropeptides against COVID-19.


Asunto(s)
COVID-19 , Péptido Intestinal Vasoactivo , Humanos , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , ARN Viral , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo , SARS-CoV-2 , Factores de Transcripción/metabolismo , Péptido Intestinal Vasoactivo/farmacología
5.
Front Immunol ; 13: 820131, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251001

RESUMEN

Coronavirus disease 2019 (COVID-19) is currently a worldwide emergency caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In observational clinical studies, statins have been identified as beneficial to hospitalized patients with COVID-19. However, experimental evidence of underlying statins protection against SARS-CoV-2 remains elusive. Here we reported for the first-time experimental evidence of the protective effects of simvastatin treatment both in vitro and in vivo. We found that treatment with simvastatin significantly reduced the viral replication and lung damage in vivo, delaying SARS-CoV-2-associated physiopathology and mortality in the K18-hACE2-transgenic mice model. Moreover, simvastatin also downregulated the inflammation triggered by SARS-CoV-2 infection in pulmonary tissue and in human neutrophils, peripheral blood monocytes, and lung epithelial Calu-3 cells in vitro, showing its potential to modulate the inflammatory response both at the site of infection and systemically. Additionally, we also observed that simvastatin affected the course of SARS-CoV-2 infection through displacing ACE2 on cell membrane lipid rafts. In conclusion, our results show that simvastatin exhibits early protective effects on SARS-CoV-2 infection by inhibiting virus cell entry and inflammatory cytokine production, through mechanisms at least in part dependent on lipid rafts disruption.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Regulación hacia Abajo/efectos de los fármacos , Inflamación/tratamiento farmacológico , Microdominios de Membrana/efectos de los fármacos , SARS-CoV-2/patogenicidad , Simvastatina/farmacología , Animales , COVID-19/virología , Modelos Animales de Enfermedad , Humanos , Inflamación/virología , Pulmón/virología , Ratones , Ratones Transgénicos , Replicación Viral/efectos de los fármacos
7.
J Antimicrob Chemother ; 76(7): 1874-1885, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33880524

RESUMEN

BACKGROUND: Current approaches of drug repurposing against COVID-19 have not proven overwhelmingly successful and the SARS-CoV-2 pandemic continues to cause major global mortality. SARS-CoV-2 nsp12, its RNA polymerase, shares homology in the nucleotide uptake channel with the HCV orthologue enzyme NS5B. Besides, HCV enzyme NS5A has pleiotropic activities, such as RNA binding, that are shared with various SARS-CoV-2 proteins. Thus, anti-HCV NS5B and NS5A inhibitors, like sofosbuvir and daclatasvir, respectively, could be endowed with anti-SARS-CoV-2 activity. METHODS: SARS-CoV-2-infected Vero cells, HuH-7 cells, Calu-3 cells, neural stem cells and monocytes were used to investigate the effects of daclatasvir and sofosbuvir. In silico and cell-free based assays were performed with SARS-CoV-2 RNA and nsp12 to better comprehend the mechanism of inhibition of the investigated compounds. A physiologically based pharmacokinetic model was generated to estimate daclatasvir's dose and schedule to maximize the probability of success for COVID-19. RESULTS: Daclatasvir inhibited SARS-CoV-2 replication in Vero, HuH-7 and Calu-3 cells, with potencies of 0.8, 0.6 and 1.1 µM, respectively. Although less potent than daclatasvir, sofosbuvir alone and combined with daclatasvir inhibited replication in Calu-3 cells. Sofosbuvir and daclatasvir prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Sofosbuvir inhibited RNA synthesis by chain termination and daclatasvir targeted the folding of secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial daclatasvir in vitro activity are achieved in plasma at Cmax after administration of the approved dose to humans. CONCLUSIONS: Daclatasvir, alone or in combination with sofosbuvir, at higher doses than used against HCV, may be further fostered as an anti-COVID-19 therapy.


Asunto(s)
COVID-19 , Preparaciones Farmacéuticas , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Carbamatos , Chlorocebus aethiops , Humanos , Imidazoles , Pirrolidinas , ARN Viral , SARS-CoV-2 , Sofosbuvir/farmacología , Valina/análogos & derivados , Células Vero
8.
Cell Death Discov ; 7(1): 43, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33649297

RESUMEN

Infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with leukopenia and uncontrolled inflammatory response in critically ill patients. A better comprehension of SARS-CoV-2-induced monocyte death is essential for the identification of therapies capable to control the hyper-inflammation and reduce viral replication in patients with 2019 coronavirus disease (COVID-19). Here, we show that SARS-CoV-2 engages inflammasome and triggers pyroptosis in human monocytes, experimentally infected, and from patients under intensive care. Pyroptosis associated with caspase-1 activation, IL-1ß production, gasdermin D cleavage, and enhanced pro-inflammatory cytokine levels in human primary monocytes. At least in part, our results originally describe mechanisms by which monocytes, a central cellular component recruited from peripheral blood to respiratory tract, succumb to control severe COVID-19.

9.
PLoS Pathog ; 16(12): e1009127, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33326472

RESUMEN

Viruses are obligate intracellular parasites that make use of the host metabolic machineries to meet their biosynthetic needs. Thus, identifying the host pathways essential for the virus replication may lead to potential targets for therapeutic intervention. The mechanisms and pathways explored by SARS-CoV-2 to support its replication within host cells are not fully known. Lipid droplets (LD) are organelles with major functions in lipid metabolism, energy homeostasis and intracellular transport, and have multiple roles in infections and inflammation. Here we described that monocytes from COVID-19 patients have an increased LD accumulation compared to SARS-CoV-2 negative donors. In vitro, SARS-CoV-2 infection were seen to modulate pathways of lipid synthesis and uptake as monitored by testing for CD36, SREBP-1, PPARγ, and DGAT-1 expression in monocytes and triggered LD formation in different human cell lines. LDs were found in close apposition with SARS-CoV-2 proteins and double-stranded (ds)-RNA in infected Vero cells. Electron microscopy (EM) analysis of SARS-CoV-2 infected Vero cells show viral particles colocalizing with LDs, suggestive that LDs might serve as an assembly platform. Pharmacological modulation of LD formation by inhibition of DGAT-1 with A922500 significantly inhibited SARS-CoV-2 replication as well as reduced production of mediators pro-inflammatory response. Taken together, we demonstrate the essential role of lipid metabolic reprograming and LD formation in SARS-CoV-2 replication and pathogenesis, opening new opportunities for therapeutic strategies to COVID-19.


Asunto(s)
COVID-19/complicaciones , Mediadores de Inflamación/metabolismo , Inflamación/etiología , Gotas Lipídicas/patología , SARS-CoV-2/aislamiento & purificación , Animales , COVID-19/inmunología , COVID-19/patología , COVID-19/virología , Estudios de Casos y Controles , Chlorocebus aethiops , Humanos , Inflamación/metabolismo , Inflamación/patología , Células Vero , Replicación Viral
10.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32759267

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is already responsible for far more deaths than previous pathogenic coronaviruses (CoVs) from 2002 and 2012. The identification of clinically approved drugs to be repurposed to combat 2019 CoV disease (COVID-19) would allow the rapid implementation of potentially life-saving procedures. The major protease (Mpro) of SARS-CoV-2 is considered a promising target, based on previous results from related CoVs with lopinavir (LPV), an HIV protease inhibitor. However, limited evidence exists for other clinically approved antiretroviral protease inhibitors. Extensive use of atazanavir (ATV) as antiretroviral and previous evidence suggesting its bioavailability within the respiratory tract prompted us to study this molecule against SARS-CoV-2. Our results show that ATV docks in the active site of SARS-CoV-2 Mpro with greater strength than LPV, blocking Mpro activity. We confirmed that ATV inhibits SARS-CoV-2 replication, alone or in combination with ritonavir (RTV) in Vero cells and a human pulmonary epithelial cell line. ATV/RTV also impaired virus-induced enhancement of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) levels. Together, our data strongly suggest that ATV and ATV/RTV should be considered among the candidate repurposed drugs undergoing clinical trials in the fight against COVID-19.


Asunto(s)
Antivirales/farmacología , Sulfato de Atazanavir/farmacología , Betacoronavirus/efectos de los fármacos , Citocinas/metabolismo , Ritonavir/farmacología , Animales , Sulfato de Atazanavir/química , Betacoronavirus/patogenicidad , Betacoronavirus/fisiología , COVID-19 , Muerte Celular/efectos de los fármacos , Chlorocebus aethiops , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/patología , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Quimioterapia Combinada , Humanos , Inflamación/metabolismo , Inflamación/virología , Lopinavir/farmacología , Simulación del Acoplamiento Molecular , Monocitos/virología , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/metabolismo , Neumonía Viral/patología , Inhibidores de Proteasas/farmacología , SARS-CoV-2 , Células Vero , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
11.
Curr Top Med Chem ; 20(2): 111-120, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31854280

RESUMEN

BACKGROUND: Neuraminidase inhibitors (NAIs) are the only class of antivirals in clinical use against influenza virus approved worldwide. However, approximately 1-3% of circulating strains present resistance mutations to oseltamivir (OST), the most used NAI. Therefore, it is important to catalogue new molecules to inhibit influenza virus, especially OST-resistant strains. Natural products from tropical plants used for human consumption represent a worthy class of substances. Their use could be stimulated in resource-limited setting where the access to expensive antiviral therapies is restricted. METHODS: We evaluated the anti-influenza virus activity of agathisflavone derived from Anacardium occidentale L. RESULTS: The neuraminidase (NA) activity of wild-type and OST-resistant influenza virus was inhibited by agathisflavone, with IC50 values ranging from 20 to 2.0 µM, respectively. Agathisflavone inhibited influenza virus replication with EC50 of 1.3 µM. Sequential passages of the virus in the presence of agathisflavone revealed the emergence of mutation R249S, A250S and R253Q in the NA gene. These changes are outside the OST binding region, meaning that agathisflavone targets this viral enzyme at a region different than conventional NAIs. CONCLUSION: Altogether our data suggest that agathisflavone has a promising chemical structure for the development of anti-influenza drugs.


Asunto(s)
Anacardium/química , Biflavonoides/farmacología , Inhibidores Enzimáticos/farmacología , Neuraminidasa/antagonistas & inhibidores , Orthomyxoviridae/efectos de los fármacos , Fitoquímicos/farmacología , Animales , Biflavonoides/química , Biflavonoides/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Perros , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Células de Riñón Canino Madin Darby/efectos de los fármacos , Células de Riñón Canino Madin Darby/virología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Neuraminidasa/metabolismo , Orthomyxoviridae/enzimología , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
12.
Curr Top Med Chem ; 20(2): 132-139, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31880262

RESUMEN

BACKGROUND: Since the influenza virus is the main cause of acute seasonal respiratory infections and pandemic outbreaks, antiviral drugs are critical to mitigate infections and impair chain of transmission. Neuraminidase inhibitors (NAIs) are the main class of anti-influenza drugs in clinical use. Nevertheless, resistance to oseltamivir (OST), the most used NAI, has been detected in circulating strains of the influenza virus. Therefore, novel compounds with anti-influenza activity are necessary. OBJECTIVE: To verify whether the NA from influenza A and B virus is susceptible to the compound 4-(4- phenyl-1H-1,2,3-triazol-1-yl)-2,2,6,6-tetramethylpiperidine-1-oxyl (Tritempo). METHODS: Cell-free neuraminidase inhibition assays were performed with Tritempo, using wild-type (WT) and OST-resistant influenza strains. Cell-based assays in MDCKs were performed to confirm Tritempo`s antiviral activity and cytotoxicity. Multiple passages of the influenza virus in increasing concentrations of our compound, followed by the sequencing of NA gene and molecular docking, were used to identify our Tritempo's target. RESULTS AND DISCUSSION: Indeed, Tritempo inhibited the neuraminidase activity of WT and OSTresistant strains of influenza A and B, at the nanomolar range. Tritempo bound to WT and OST-resistant influenza NA isoforms at the sialic acid binding site with low free binding energies. Cell-free assays were confirmed using a prototypic influenza A infection assay in MDCK cells, in which we found an EC50 of 0.38 µM, along with very low cytotoxicity, CC50 > 2,000 µM. When we passaged the influenza A virus in the presence of Tritempo, a mutant virus with the G248P change in the NA was detected. This mutant was resistant to Tritempo but remained sensitive to OST, indicating no cross-resistance between the studied and reference drugs. CONCLUSION: Our results suggest that Tritempo's chemical structure is a promising one for the development of novel antivirals against influenza.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Neuraminidasa/antagonistas & inhibidores , Piperidinas/farmacología , Tiazoles/farmacología , Triazoles/farmacología , Antivirales/síntesis química , Antivirales/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Virus de la Influenza A/enzimología , Virus de la Influenza B/enzimología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Neuraminidasa/metabolismo , Piperidinas/síntesis química , Piperidinas/química , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química , Triazoles/síntesis química , Triazoles/química
13.
PLoS Negl Trop Dis ; 13(1): e0007072, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30699122

RESUMEN

Yellow fever virus (YFV) is a member of the Flaviviridae family. In Brazil, yellow fever (YF) cases have increased dramatically in sylvatic areas neighboring urban zones in the last few years. Because of the high lethality rates associated with infection and absence of any antiviral treatments, it is essential to identify therapeutic options to respond to YFV outbreaks. Repurposing of clinically approved drugs represents the fastest alternative to discover antivirals for public health emergencies. Other Flaviviruses, such as Zika (ZIKV) and dengue (DENV) viruses, are susceptible to sofosbuvir, a clinically approved drug against hepatitis C virus (HCV). Our data showed that sofosbuvir docks onto YFV RNA polymerase using conserved amino acid residues for nucleotide binding. This drug inhibited the replication of both vaccine and wild-type strains of YFV on human hepatoma cells, with EC50 values around 5 µM. Sofosbuvir protected YFV-infected neonatal Swiss mice and adult type I interferon receptor knockout mice (A129-/-) from mortality and weight loss. Because of its safety profile in humans and significant antiviral effects in vitro and in mice, Sofosbuvir may represent a novel therapeutic option for the treatment of YF. Key-words: Yellow fever virus; Yellow fever, antiviral; sofosbuvir.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral , ARN Viral/efectos de los fármacos , Sofosbuvir/farmacología , Fiebre Amarilla/tratamiento farmacológico , Virus de la Fiebre Amarilla/efectos de los fármacos , Animales , Chlorocebus aethiops , Modelos Animales de Enfermedad , Células Hep G2 , Humanos , Ratones , Ratones Noqueados , ARN Viral/sangre , ARN Viral/genética , Células Vero , Fiebre Amarilla/sangre , Fiebre Amarilla/patología , Fiebre Amarilla/virología , Virus de la Fiebre Amarilla/genética
14.
Artículo en Inglés | MEDLINE | ID: mdl-30455237

RESUMEN

Chikungunya virus (CHIKV) causes a febrile disease associated with chronic arthralgia, which may progress to neurological impairment. Chikungunya fever (CF) is an ongoing public health problem in tropical and subtropical regions of the world, where control of the CHIKV vector, Aedes mosquitos, has failed. As there is no vaccine or specific treatment for CHIKV, patients receive only palliative care to alleviate pain and arthralgia. Thus, drug repurposing is necessary to identify antivirals against CHIKV. CHIKV RNA polymerase is similar to the orthologue enzyme of other positive-sense RNA viruses, such as members of the Flaviviridae family. Among the Flaviviridae, not only is hepatitis C virus RNA polymerase susceptible to sofosbuvir, a clinically approved nucleotide analogue, but so is dengue, Zika, and yellow fever virus replication. Here, we found that sofosbuvir was three times more selective in inhibiting CHIKV production in human hepatoma cells than ribavirin, a pan-antiviral drug. Although CHIKV replication in human induced pluripotent stem cell-derived astrocytes was less susceptible to sofosbuvir than were hepatoma cells, sofosbuvir nevertheless impaired virus production and cell death in a multiplicity of infection-dependent manner. Sofosbuvir also exhibited antiviral activity in vivo by preventing CHIKV-induced paw edema in adult mice at a dose of 20 mg/kg of body weight/day and prevented mortality in a neonate mouse model at 40- and 80-mg/kg/day doses. Our data demonstrate that a prototypic alphavirus, CHIKV, is also susceptible to sofosbuvir. As sofosbuvir is a clinically approved drug, our findings could pave the way to it becoming a therapeutic option against CF.


Asunto(s)
Antivirales/uso terapéutico , Fiebre Chikungunya/tratamiento farmacológico , Virus Chikungunya/efectos de los fármacos , Virus Chikungunya/patogenicidad , Sofosbuvir/uso terapéutico , Replicación Viral/efectos de los fármacos , Animales , Animales Recién Nacidos , Artralgia/tratamiento farmacológico , Artralgia/virología , Fiebre Chikungunya/virología , Humanos , Masculino , Ratones
16.
Sci Rep ; 7: 40920, 2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-28098253

RESUMEN

Zika virus (ZIKV) is a member of the Flaviviridae family, along with other agents of clinical significance such as dengue (DENV) and hepatitis C (HCV) viruses. Since ZIKV causes neurological disorders during fetal development and in adulthood, antiviral drugs are necessary. Sofosbuvir is clinically approved for use against HCV and targets the protein that is most conserved among the members of the Flaviviridae family, the viral RNA polymerase. Indeed, we found that sofosbuvir inhibits ZIKV RNA polymerase, targeting conserved amino acid residues. Sofosbuvir inhibited ZIKV replication in different cellular systems, such as hepatoma (Huh-7) cells, neuroblastoma (SH-Sy5y) cells, neural stem cells (NSC) and brain organoids. In addition to the direct inhibition of the viral RNA polymerase, we observed that sofosbuvir also induced an increase in A-to-G mutations in the viral genome. Together, our data highlight a potential secondary use of sofosbuvir, an anti-HCV drug, against ZIKV.


Asunto(s)
Antivirales/farmacología , Sofosbuvir/farmacología , Replicación Viral/efectos de los fármacos , Virus Zika/fisiología , Antivirales/uso terapéutico , Línea Celular , Supervivencia Celular/efectos de los fármacos , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/metabolismo , Genoma Viral , Humanos , Mutación , Sofosbuvir/uso terapéutico , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo , Virus Zika/genética , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/tratamiento farmacológico , Infección por el Virus Zika/patología , Infección por el Virus Zika/virología
17.
Eur J Med Chem ; 127: 334-340, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28068604

RESUMEN

Zika virus (ZIKV), an arthropod-born Flavivirus, has been associated with a wide range of neurological diseases in adults, foetuses and neonates. Since no vaccine is available, repurposing of antiviral drugs currently in medical use is necessary. Mefloquine has confirmed anti-ZIKV activity. We used medicinal chemistry-driven approaches to synthesize and evaluate the ability of a series of new 2,8-bis(trifluoromethyl)quinoline derivatives to inhibit ZIKV replication in vitro, in order to improve the potency of mefloquine. We found that quinoline derivatives 3a and 4 were the most potent compounds within this series, both with mean EC50 values of 0.8 µM, which represents a potency 5 times that of mefloquine. These results indicate that new 2,8-bis(trifluoromethyl)quinoline chemical structures may be promising for the development of novel anti-ZIKV drugs.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Mefloquina/farmacología , Quinolinas/química , Quinolinas/farmacología , Virus Zika/efectos de los fármacos , Animales , Antivirales/síntesis química , Antivirales/toxicidad , Chlorocebus aethiops , Diseño de Fármacos , Quinolinas/síntesis química , Quinolinas/toxicidad , Relación Estructura-Actividad , Células Vero , Replicación Viral/efectos de los fármacos , Virus Zika/fisiología
18.
Eur J Med Chem ; 127: 434-441, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28092859

RESUMEN

Zika virus (ZIKV), an emerging Flavivirus, was recently associated with severe neurological complications and congenital diseases. Therefore, development of antiviral agents capable of inhibiting ZIKV replication is urgent. Chloroquine is a molecule with a confirmed safety history for use with pregnant women, and has been found to exhibit anti-ZIKV activity at concentrations around 10 µM. This suggests that modifications to the chloroquine structure could be promising for obtaining more effective anti-ZIKV agents. Here, we report the ability of a series of N-(2-(arylmethylimino)ethyl)-7-chloroquinolin-4-amine derivatives to inhibit ZIKV replication in vitro. We have found that the quinoline derivative, N-(2-((5-nitrofuran-2-yl)methylimino)ethyl)-7-chloroquinolin-4-amine, 40, was the most potent compound within this series, reducing ZIKV replication by 72% at 10 µM. Compound 40 exhibits an EC50 value of 0.8 ± 0.07 µM, compared to that of chloroquine of 12 ± 3.2 µM. Good activities were also obtained for other compounds, including those with aryl groups = phenyl, 4-fluorophenyl, 4-nitrophenyl, 2,6-dimethoxyphenyl, 3-pyridinyl and 5-nitrothien-2-yl. Syntheses of these quinoline derivatives have been obtained both by thermal and ultrasonic means. The ultrasonic method produced comparable yields to the thermal (reflux) method in very much shorter times 30-180 s compared to 30-180 min reactions times. These results indicate that this group of compounds is a good follow-up point for the potential discovery of new drugs against the Zika disease.


Asunto(s)
Antivirales/síntesis química , Antivirales/farmacología , Cloroquina/síntesis química , Cloroquina/farmacología , Temperatura , Ondas Ultrasónicas , Virus Zika/efectos de los fármacos , Animales , Antivirales/química , Chlorocebus aethiops , Cloroquina/química , Cloroquina/toxicidad , Células Vero , Replicación Viral/efectos de los fármacos , Virus Zika/fisiología
19.
PLoS One ; 10(10): e0139236, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26462111

RESUMEN

The influenza virus causes acute respiratory infections, leading to high morbidity and mortality in groups of patients at higher risk. Antiviral drugs represent the first line of defense against influenza, both for seasonal infections and pandemic outbreaks. Two main classes of drugs against influenza are in clinical use: M2-channel blockers and neuraminidase inhibitors. Nevertheless, because influenza strains that are resistant to these antivirals have been described, the search for novel compounds with different mechanisms of action is necessary. Here, we investigated the anti-influenza activity of a fungi-derived natural product, aureonitol. This compound inhibited influenza A and B virus replication. This compound was more effective against influenza A(H3N2), with an EC50 of 100 nM. Aureonitol cytoxicity was also very low, with a CC50 value of 1426 µM. Aureonitol inhibited influenza hemagglutination and, consequently, significantly impaired virus adsorption. Molecular modeling studies revealed that aureonitol docked in the sialic acid binding site of hemagglutinin, forming hydrogen bonds with highly conserved residues. Altogether, our results indicate that the chemical structure of aureonitol is promising for future anti-influenza drug design.


Asunto(s)
Furanos/farmacología , Hemaglutininas/metabolismo , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Glicoproteínas de Membrana/metabolismo , Replicación Viral/efectos de los fármacos , Aminoácidos/genética , Animales , Antivirales/farmacología , Muerte Celular/efectos de los fármacos , Simulación por Computador , Secuencia Conservada , Perros , Relación Dosis-Respuesta a Droga , Furanos/química , Células HEK293 , Hemaglutinación/efectos de los fármacos , Hemaglutininas/química , Humanos , Células de Riñón Canino Madin Darby , Neuraminidasa/metabolismo , Factores de Tiempo , Internalización del Virus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...