Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Steroid Biochem Mol Biol ; 245: 106623, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306143

RESUMEN

Sex-related differences in bladder cancer incidence and progression infer a role for sex hormones and their cognate receptors in this disease. In part due to the oncogenic role of androgen receptor signaling in prostate cancer, the focus of most preclinical and clinical research to-date has been on the potential pro-tumorigenic action of androgens in urothelial cancers. However, clinical studies of androgen receptor antagonism have yielded minimal success. In this review, we explore the tumor suppressor role of androgen receptor in bladder cancer and discuss how it might be harnessed therapeutically.

2.
Am J Physiol Cell Physiol ; 327(2): C403-C414, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38881423

RESUMEN

Aqueous humor drainage from the anterior eye determines intraocular pressure (IOP) under homeostatic and pathological conditions. Swelling of the trabecular meshwork (TM) alters its flow resistance but the mechanisms that sense and transduce osmotic gradients remain poorly understood. We investigated TM osmotransduction and its role in calcium and chloride homeostasis using molecular analyses, optical imaging, and electrophysiology. Anisosmotic conditions elicited proportional changes in TM cell volume, with swelling, but not shrinking, evoking elevations in intracellular calcium concentration [Ca2+]TM. Hypotonicity-evoked calcium signals were sensitive to HC067047, a selective blocker of TRPV4 channels, whereas the agonist GSK1016790A promoted swelling under isotonic conditions. TRPV4 inhibition partially suppressed hypotonicity-induced volume increases and reduced the magnitude of the swelling-induced membrane current, with a substantial fraction of the swelling-evoked current abrogated by Cl- channel antagonists 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid. The transcriptome of volume-sensing chloride channel candidates in primary human was dominated by ANO6 transcripts, with moderate expression of ANO3, ANO7, and ANO10 transcripts and low expression of LTTRC genes that encode constituents of the volume-activated anion channel. Imposition of 190 mosM but not 285 mosM hypotonic gradients increased conventional outflow in mouse eyes. TRPV4-mediated cation influx thus works with Cl- efflux to sense and respond to osmotic stress, potentially contributing to pathological swelling, calcium overload, and intracellular signaling that could exacerbate functional disturbances in inflammatory disease and glaucoma.NEW & NOTEWORTHY Intraocular pressure is dynamically regulated by the flow of aqueous humor through paracellular passages within the trabecular meshwork (TM). This study shows hypotonic gradients that expand the TM cell volume and reduce the outflow facility in mouse eyes. The swelling-induced current consists of TRPV4 and chloride components, with TRPV4 as a driver of swelling-induced calcium signaling. TRPV4 inhibition reduced swelling, suggesting a novel treatment for trabeculitis and glaucoma.


Asunto(s)
Tamaño de la Célula , Canales de Cloruro , Canales Catiónicos TRPV , Malla Trabecular , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/agonistas , Malla Trabecular/metabolismo , Malla Trabecular/efectos de los fármacos , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Animales , Ratones , Tamaño de la Célula/efectos de los fármacos , Humanos , Calcio/metabolismo , Ratones Endogámicos C57BL , Presión Osmótica , Señalización del Calcio/efectos de los fármacos , Masculino , Presión Intraocular/fisiología , Presión Intraocular/efectos de los fármacos , Células Cultivadas , Femenino , Leucina/análogos & derivados , Morfolinas , Pirroles , Sulfonamidas
3.
Aging Cell ; 23(7): e14160, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38566432

RESUMEN

Age and elevated intraocular pressure (IOP) are the two primary risk factors for glaucoma, an optic neuropathy that is the leading cause of irreversible blindness. In most people, IOP is tightly regulated over a lifetime by the conventional outflow tissues. However, the mechanistic contributions of age to conventional outflow dysregulation, elevated IOP and glaucoma are unknown. To address this gap in knowledge, we studied how age affects the morphology, biomechanical properties and function of conventional outflow tissues in C57BL/6 mice, which have an outflow system similar to humans. As reported in humans, we observed that IOP in mice was maintained within a tight range over their lifespan. Remarkably, despite a constellation of age-related changes to the conventional outflow tissues that would be expected to hinder aqueous drainage and impair homeostatic function (decreased cellularity, increased pigment accumulation, increased cellular senescence and increased stiffness), outflow facility, a measure of conventional outflow tissue fluid conductivity, was stable with age. We conclude that the murine conventional outflow system has significant functional reserve in healthy eyes. However, these age-related changes, when combined with other underlying factors, such as genetic susceptibility, are expected to increase risk for ocular hypertension and glaucoma.


Asunto(s)
Envejecimiento , Homeostasis , Presión Intraocular , Ratones Endogámicos C57BL , Animales , Presión Intraocular/fisiología , Envejecimiento/fisiología , Ratones , Glaucoma/fisiopatología , Glaucoma/patología , Glaucoma/metabolismo , Masculino , Humanos
4.
Invest Ophthalmol Vis Sci ; 65(3): 22, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38497513

RESUMEN

Purpose: Loss-of-function variants in the ANGPTL7 gene are associated with protection from glaucoma and reduced intraocular pressure (IOP). We investigated the role of ANGPTL7 in IOP homeostasis and its potential as a target for glaucoma therapeutics. Methods: IOP, outflow facility, and outflow tissue morphology of Angptl7 knockout (KO) mice were assessed with and without dexamethasone (Dex). ANGPTL7 was quantified in conditioned media from human trabecular meshwork cells in response to Dex, in effluent from perfused human donor eyes, and in aqueous humor from human patients treated with steroids. Antibodies to ANGPTL7 were generated and tested in three-dimensional (3D) culture of outflow cells and perfused human donor eyes. Rabbits were injected intravitreally with a neutralizing antibody targeting ANGPTL7, and IOP was measured. Results: IOP was significantly elevated, but outflow facility and outflow tissue morphology were not different between Angptl7 KO mice and littermates. When challenged with Dex, IOP increased in wild-type but not Angptl7 KO mice. In human samples, increased ANGPTL7 was seen in the aqueous humor of patients treated with steroids, regardless of glaucoma status. Using 3D culture, recombinant ANGPTL7 decreased, and ANGPTL7-blocking antibodies increased hydraulic conductivity. Significantly, outflow facility increased in human eyes treated ex vivo with ANGPTL7-blocking antibodies, and IOP decreased for 21 days in rabbits after a single injection of blocking antibodies. Conclusions: Using multiple models, we have demonstrated that excess ANGPTL7 increases outflow resistance and IOP and that neutralizing ANGPTL7 has beneficial effects in both naïve and steroid-induced hypertensive eyes, thus motivating the development of ANGPTL7-targeting therapeutics for the treatment of glaucoma.


Asunto(s)
Glaucoma , Animales , Ratones , Humanos , Conejos , Anticuerpos Bloqueadores , Ojo , Anticuerpos Neutralizantes/farmacología , Ratones Noqueados , Esteroides , Proteínas Similares a la Angiopoyetina , Proteína 7 Similar a la Angiopoyetina
5.
Am J Physiol Cell Physiol ; 326(2): C513-C528, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38105758

RESUMEN

Pathological alterations in the biomechanical properties of the Schlemm's canal (SC) inner wall endothelium and its immediate vicinity are strongly associated with ocular hypertension in glaucoma due to decreased outflow facility. Specifically, the underlying trabecular meshwork is substantially stiffer in glaucomatous eyes compared with that from normal eyes. This raises the possibility of a critical involvement of mechanotransduction processes in driving SC cell dysfunction. Yes-associated protein (YAP) has emerged as a key contributor to glaucoma pathogenesis. However, the molecular underpinnings of SC cell mechanosignaling via YAP and transcriptional coactivator with PDZ-binding motif (TAZ) in response to glaucomatous extracellular matrix (ECM) stiffening are not well understood. Using a novel biopolymer hydrogel that facilitates dynamic and reversible stiffness tuning, we investigated how ECM stiffening modulates YAP/TAZ activity in primary human SC cells, and whether disruption of YAP/TAZ mechanosignaling attenuates SC cell pathobiology and increases ex vivo outflow facility. We demonstrated that ECM stiffening drives pathologic YAP/TAZ activation and cytoskeletal reorganization in SC cells, which was fully reversible by matrix softening in a distinct time-dependent manner. Furthermore, we showed that pharmacologic or genetic disruption of YAP/TAZ mechanosignaling abrogates stiffness-induced SC cell dysfunction involving altered cytoskeletal and ECM remodeling. Finally, we found that perfusion of the clinically used, small molecule YAP/TAZ inhibitor verteporfin (without light activation) increases ex vivo outflow facility in normal mouse eyes. Collectively, our data provide new evidence for a pathologic role of aberrant YAP/TAZ mechanosignaling in SC cell dysfunction and suggest that YAP/TAZ inhibition has therapeutic value for treating ocular hypertension in glaucoma.NEW & NOTEWORTHY Pathologically altered biomechanical properties of the Schlemm's canal (SC) inner wall microenvironment were recently validated as the cause for increased outflow resistance in ocular hypertensive glaucoma. However, the involvement of specific mechanotransduction pathways in these disease processes is largely unclear. Here, we demonstrate that Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) are central regulators of glaucoma-like SC cell dysfunction in response to extracellular matrix stiffening and that targeted disruption of YAP/TAZ mechanosignaling attenuates SC cell pathobiology and enhances outflow function.


Asunto(s)
Glaucoma , Proteínas Señalizadoras YAP , Animales , Humanos , Ratones , Mecanotransducción Celular , Canal de Schlemm , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ
6.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38106150

RESUMEN

Age and elevated intraocular pressure (IOP) are the two primary risk factors for glaucoma, an optic neuropathy that is the leading cause of irreversible blindness. In most people, IOP is tightly regulated over a lifetime by the conventional outflow tissues. However, the mechanistic contributions of age to conventional outflow dysregulation, elevated IOP and glaucoma are unknown. To address this gap in knowledge, we studied how age affects the morphology, biomechanical properties and function of conventional outflow tissues in C57BL/6 mice, which have an outflow system similar to humans. As reported in humans, we observed that IOP in mice was maintained within a tight range over their lifespan. Remarkably, despite a constellation of age-related changes to the conventional outflow tissues that would be expected to hinder aqueous drainage and impair homeostatic function (decreased cellularity, increased pigment accumulation, increased cellular senescence and increased stiffness), outflow facility, a measure of conventional outflow tissue fluid conductivity, was stable with age. We conclude that the murine conventional outflow system has significant functional reserve in healthy eyes. However, these age-related changes, when combined with other underlying factors, such as genetic susceptibility, are expected to increase risk for ocular hypertension and glaucoma.

7.
bioRxiv ; 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37781615

RESUMEN

Pathologic alterations in the biomechanical properties of the Schlemm's canal (SC) inner wall endothelium and its immediate vicinity are strongly associated with ocular hypertension in glaucoma due to decreased outflow facility. Specifically, the underlying trabecular meshwork is substantially stiffer in glaucomatous eyes compared to that from normal eyes. This raises the possibility of a critical involvement of mechanotransduction processes in driving SC cell dysfunction. Yes-associated protein (YAP) has emerged as a key contributor to glaucoma pathogenesis. However, the molecular underpinnings of SC cell YAP mechanosignaling in response to glaucomatous extracellular matrix (ECM) stiffening are not well understood. Using a novel biopolymer hydrogel that facilitates dynamic and reversible stiffness tuning, we investigated how ECM stiffening modulates YAP activity in primary human SC cells, and whether disruption of YAP mechanosignaling attenuates SC cell pathobiology and increases ex vivo outflow facility. We demonstrated that ECM stiffening drives pathologic YAP activation and cytoskeletal reorganization in SC cells, which was fully reversible by matrix softening in a distinct time-dependent manner. Furthermore, we showed that pharmacologic or genetic disruption of YAP mechanosignaling abrogates stiffness-induced SC cell dysfunction involving altered cytoskeletal and ECM remodeling. Lastly, we found that perfusion of the clinically-used, small molecule YAP inhibitor verteporfin (without light activation) increases ex vivo outflow facility in normal mouse eyes. Collectively, our data provide new evidence for a pathologic role of aberrant YAP mechanosignaling in SC cell dysfunction and suggest that YAP inhibition has therapeutic value for treating ocular hypertension in glaucoma.

8.
Exp Eye Res ; 236: 109652, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37717688

RESUMEN

Ocular hypertension is caused by dysregulated outflow resistance regulation by the conventional outflow (CO) pathway. The physiology of the CO pathway can be directly studied during ex vivo ocular perfusions. In addition to measuring outflow resistance generation by the CO tissues, perfusion media that is conditioned by CO pathway cells can be collected upon exiting the eye as effluent. Thus, contents of effluent include factors contributed by upstream cells that report on the (dys)functionality of the outflow tissues. Two methods have been used in the past to monitor effluent contents from perfused eyes, each with their limitations. To overcome these limitations, we designed and printed a metabolic chamber to accommodate eyes of different sizes during perfusions. To test this new chamber, human eyes were perfused for 4 h at constant flow rate of 2.5 µl/min, while pressure was continuously monitored and effluent was collected every hour. Facility was 0.28 ± 0.16 µl/min/mmHg for OD eyes and 0.33 ± 0.11 µl/min/mmHg for OS eyes (n = 3). Effluent samples were protein rich, with protein concentration ranging from 2700 to 10,000 µg/ml for all eyes and timepoints (N = 3). Effluent samples expressed proteins that were actively secreted by the TM and easily detectible including MYOC and MMP2. Taken together, our model provides a reliable method to collect effluent from ex vivo human eyes, while maintaining whole globe integrity.


Asunto(s)
Humor Acuoso , Glaucoma , Humanos , Humor Acuoso/metabolismo , Malla Trabecular/metabolismo , Proteínas/metabolismo , Perfusión
9.
Hum Mol Genet ; 32(21): 3053-3062, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37540217

RESUMEN

Pseudoexfoliation glaucoma (PEXG) is characterized by dysregulated extracellular matrix (ECM) homeostasis that disrupts conventional outflow function and increases intraocular pressure (IOP). Prolonged IOP elevation results in optic nerve head damage and vision loss. Uniquely, PEXG is a form of open angle glaucoma that has variable penetrance, is difficult to treat and does not respond well to common IOP-lowering pharmaceuticals. Therefore, understanding modulators of disease severity will aid in targeted therapies for PEXG. Genome-wide association studies have identified polymorphisms in the long non-coding RNA lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) as a risk factor for PEXG. Risk alleles, oxidative stress and mechanical stretch all alter LOXL1-AS1 expression. As a long non-coding RNA, LOXL1-AS1 binds hnRNPL and regulates global gene expression. In this study, we focus on the role of LOXL1-AS1 in the ocular cells (trabecular meshwork and Schlemm's canal) that regulate IOP. We show that selective knockdown of LOXL1-AS1 leads to cell-type-specific changes in gene expression, ECM homeostasis, signaling and morphology. These results implicate LOXL1-AS1 as a modulator of cellular homeostasis, altering cell contractility and ECM turnover, both of which are well-known contributors to PEXG. These findings support LOXL1-AS1 as a key target for modifying the disease.


Asunto(s)
Síndrome de Exfoliación , Glaucoma de Ángulo Abierto , ARN Largo no Codificante , Humanos , Glaucoma de Ángulo Abierto/genética , ARN Largo no Codificante/genética , Proteína-Lisina 6-Oxidasa/genética , Estudio de Asociación del Genoma Completo , Síndrome de Exfoliación/genética , Síndrome de Exfoliación/metabolismo , Aminoácido Oxidorreductasas/genética
10.
Invest Ophthalmol Vis Sci ; 64(7): 36, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37358489

RESUMEN

Purpose: The aim of this study was to test the hypothesis that nitric oxide (NO) mediates a pressure-dependent, negative feedback loop that maintains conventional outflow homeostasis and thus IOP. If true, holding pressure during ocular perfusions will result in uncontrolled production of NO, hyper-relaxation of the trabecular meshwork, and washout. Methods: Paired porcine eyes were perfused at constant pressure of 15 mm Hg. After 1 hour acclimatization, one eye was exchanged with N5-[imino(nitroamino)methyl]-L-ornithine, methyl ester, monohydrochloride (L-NAME) (50 µm) and the contralateral eye with DBG, and perfused for 3 hours. In a separate group, one eye was exchanged with DETA-NO (100 nM) and the other with DBG and perfused for 30 minutes. Changes in conventional outflow tissue function and morphology were monitored. Results: Control eyes exhibited a washout rate of 15% (P = 0.0026), whereas eyes perfused with L-NAME showed a 10% decrease in outflow facility from baseline over 3 hours (P < 0.01); with nitrite levels in effluent positively correlating with time and facility. Compared with L-NAME-treated eyes, significant morphological changes in control eyes included increased distal vessel size, number of giant vacuoles, and juxtacanalicular tissue separation from the angular aqueous plexi (P < 0.05). For 30-minute perfusions, control eyes showed a washout rate of 11% (P = 0.075), whereas DETA-NO-treated eyes showed an increased washout rate of 33% from baseline (P < 0.005). Compared with control eyes, significant morphological changes in DETA-NO-treated eyes also included increased distal vessel size, number of giant vacuoles and juxtacanalicular tissue separation (P < 0.05). Conclusions: Uncontrolled NO production is responsible for washout during perfusions of nonhuman eyes where pressure is clamped.


Asunto(s)
Humor Acuoso , Presión Intraocular , Óxido Nítrico , Perfusión , Animales , Constricción , NG-Nitroarginina Metil Éster/farmacología , Porcinos , Malla Trabecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...