Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Pharmacol ; 106: 104361, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211665

RESUMEN

Thimerosal, a preservative commonly used in the pharmaceutical and cosmetic industry, has raised concerns regarding its potentially toxic effects as an organic mercury compound. Within this context, using an NMR-based metabolomics profile and chemometric analysis, zebrafish embryos were used as an in vivo model to study the effects of thimerosal in metabolic profiles after exposure to sublethal concentrations of the mercury compound. The thimerosal concentrations of 40 and 80 nM were employed, corresponding to 40% and 80% of the LC50, respectively, for zebrafish embryos. The most significant alterations in the metabolic profile included changes in carbohydrates, amino acids, nucleotides, trimethylamine-N-oxide, ethanolamine, betaine, and ethanol. Furthermore, thimerosal exposure affects various metabolic pathways, impairing the nervous system, disrupting protein metabolism, and potentially causing oxidative damage. Therefore, adopting a metabolomics approach in this investigation provided insights into the potentially implicated metabolic pathways contributing to the deleterious effects of thimerosal in biological systems.


Asunto(s)
Mercurio , Pez Cebra , Animales , Timerosal/toxicidad , Metabolómica , Aminoácidos
2.
Mar Pollut Bull ; 198: 115832, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006869

RESUMEN

Coral reefs are experiencing accelerated degradation due to global and local stressors. The understanding of how corals cope with these disturbances is urgent. We focused on elucidating antioxidant capacity responses of the Mussismilia harttii and Siderastrea sp. corals, in reefs with use management in a marine protected area. We tested whether the activity of antioxidant enzymes in healthy colonies is higher at multiple-use reefs than at no-take reef, and whether the activity of antioxidant enzymes is higher for bleached than for healthy Siderastrea sp. colonies. Lipid peroxidation and enzymatic activity found in bleached colonies evidence chronic stress and cellular damage not related to thermal anomalies. Chronic stress in healthy colonies was also found but responses differed among species, being higher at multiple use reefs, mainly for Siderastrea sp. We highlight the role of the local conservation actions in the integrity of coral physiology and reef resilience under global climate changes.


Asunto(s)
Antozoos , Animales , Antioxidantes , Arrecifes de Coral , Estrés Oxidativo , Cambio Climático , Ecosistema
3.
J Toxicol Environ Health A ; 87(3): 120-132, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37969104

RESUMEN

There is a growing concern regarding the adverse risks exposure to cylindrospermopsin (CYN) might exert on animals and humans. However, data regarding the toxicity of this cyanotoxin to neotropical fish species are scarce. Using the fish species Poecilia reticulata, the influence of CYN concentrations equal to and above the tolerable for drinking water may produce on liver was determined by assessing biomarkers of antioxidant defense mechanisms and correlated to qualitative and semiquantitative histopathological observations. Adult females were exposed to 0.0 (Control); 0.5, 1 and 1.5 µg/L pure CYN for 24 or 96 hr, in triplicate. Subsequently the livers were extracted for biochemical assays and histopathological evaluation. Catalase (CAT) activity was significantly increased only by 1.5 µg/L CYN-treatment, at both exposure times. Glutathione -S-transferase (GST) activity presented a biphasic response for both exposure times. It was markedly decreased after exposure by 0.5 µg/L CYN treatment but significantly elevated by 1.5 µg/L CYN treatment. All CYN treatments produced histopathological alterations, as evidenced by hepatocyte cords degeneration, steatosis, inflammatory infiltration, melanomacrophage centers, vessel congestion, and areas with necrosis. Further, an IORG >35 was achieved for all treatments, indicative of the presence of severe histological alterations in P. reticulata hepatic parenchyma and stroma. Taken together, data demonstrated evidence that CYN-induced hepatotoxicity in P. reticulata appears to be associated with an imbalance of antioxidant defense mechanisms accompanied by histopathological liver alterations. It is worthy to note that exposure to low environmentally-relevant CYN concentrations might constitute a significant risk to health of aquatic organisms.


Asunto(s)
Toxinas Bacterianas , Poecilia , Animales , Antioxidantes/metabolismo , Toxinas Bacterianas/toxicidad , Hígado/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Uracilo/toxicidad
4.
Sci Total Environ ; 868: 161737, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36693575

RESUMEN

Metabolomics is an innovative approach used in the medical, toxicological, and biological sciences. As an interdisciplinary topic, metabolomics and its relation with the environment and toxicological research are extensive. The use of substances, such as drugs and pesticides, contributes to the continuous releasing of xenobiotics into the environment, harming organisms and their habitats. In this context, fish are important bioindicators of the environmental condition and have often been used as model species. Among them, zebrafish (Danio rerio) presents itself as a versatile and straightforward option due to its unique attributes for research. Zebrafish proves to be a valuable model for toxicity assays and also for metabolomics profiling by analytical tools. Thus, NMR-based metabolomics associated with statistical analysis can reasonably assist researchers in critical factors related to discovering and validating biomarkers through accurate diagnosis. Therefore, this review aimed to report the studies that applied zebrafish as a model for (eco)toxicological assays and essentially utilized NMR-based metabolomics analysis to assess the biochemical profile and thus suggest the potential biological marker.


Asunto(s)
Plaguicidas , Pez Cebra , Animales , Pez Cebra/metabolismo , Ecotoxicología , Metabolómica , Espectroscopía de Resonancia Magnética , Plaguicidas/metabolismo
5.
Environ Pollut ; 290: 118019, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34670334

RESUMEN

Nuclear abnormality (NA) assay in fish has been widely applied for toxicity risk assessment under field and laboratory conditions. The zebrafish (Danio rerio) has become a suitable model system for assessing the NA induced by pollutants. Thus, the current study aimed to summarize and discuss the literature concerning micronucleus (MN) and other NA in zebrafish and its applications in toxicity screening and environmental risk assessment. The data concerning the publication year, pollutant type, experimental design, and type of NA induced by pollutants were summarized. Also, molecular mechanisms that cause NA in zebrafish were discussed. Revised data showed that the MN test in zebrafish has been applied since 1996. The MN was the most frequently NA, but 15 other nuclear alterations were reported in zebrafish, such as notched nuclei, blebbed nuclei, binucleated cell, buds, lobed nuclei, bridges, and kidney-shaped. Several pollutants can induce NA in zebrafish, mainly effluents (mixture of pollutants), agrochemicals, and microplastics. The pollutant-induced NA in zebrafish depends on experimental design (i.e., exposure time, concentration, and exposure condition), developmental stages, cell/tissue type, and the type of pollutant. Besides, research gaps and recommendations for future studies are indicated. Overall, the current study showed that zebrafish is a suitable model to assess pollutant-induced mutagenicity.


Asunto(s)
Plásticos , Pez Cebra , Animales , Bioensayo , Núcleo Celular , Pruebas de Micronúcleos , Pez Cebra/genética
6.
Fish Physiol Biochem ; 43(1): 51-63, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27492246

RESUMEN

This work describes gonadotropic (GtH) cells and their morphological and immunohistochemical changes during the spermatogenic cycle of Serrasalmus maculatus (continuous spermatogenesis) and Pimelodus maculatus (seasonal spermatogenesis). GtH cells, widely distributed in the proximal pars distalis of the adenohypophysis, were characterized as round-shaped cells with eccentric nucleus, and cytoplasm with basophilic secretory granules and a variable number of vacuoles for both species. Immunohistochemistry against ß-follicle-stimulating hormone (Fsh) and ß-luteinizing hormone (Lh) in adjacent sections showed two separated GtH-producing cell populations, and a third population where both GtHs are expressed in the same cell for both species. In the seasonal spermatogenesis of P. maculatus, GtH cells seemed to be more abundant during developing and spawning capable phases. In contrast, no cyclic changes were detected in the continuous spermatogenesis of S. maculatus, except for the strong immunoreaction for Fsh and Lh in males with intense spermiogenesis. We conclude that changes reported here might reflect the type of spermatogenic cycle (seasonal or continuous) which are under different regulatory mechanisms (environmental and internal cues) controlling the reproduction in these species.


Asunto(s)
Bagres , Characiformes , Adenohipófisis/citología , Espermatogénesis , Animales , Bagres/anatomía & histología , Bagres/metabolismo , Bagres/fisiología , Characiformes/anatomía & histología , Characiformes/metabolismo , Characiformes/fisiología , Hormona Folículo Estimulante de Subunidad beta/metabolismo , Hormona Luteinizante de Subunidad beta/metabolismo , Masculino , Adenohipófisis/anatomía & histología , Adenohipófisis/metabolismo , Estaciones del Año , Testículo/citología
7.
Fish Physiol Biochem ; 40(3): 897-909, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24310491

RESUMEN

In this study, we describe for the first time the details of the pituitary gland morphogenesis and the ontogeny of adenohypophyseal cells of a South American Characiform species with great importance for Brazilian Aquaculture, Salminus brasiliensis (Characiformes, Characidae), from hatching to 25 days after hatching (dah), by histochemical and immunocytochemical methods. The pituitary placode was first detected at hatching (0 dah), and the pituitary anlage became more defined at 0.5 dah. The neurohypophysis (NH) development started at 3 dah, and the early formation of its stalk at 12.5 dah. An increase in adenohypophyseal and NH tissues was also observed, and in juveniles at 25 dah, the pituitary displayed similar morphology to that found in adults of this species, displaying the main features of the teleost pituitary. PRL cells were detected at 0.5 dah, together with ACTH and α-MSH cells, followed by GH and SL cells at 1.5 dah. ß-FSH cells were detected at 25 dah, while ß-LH cells at 5 dah. The pituitary development in this species comprises a dynamic process similar to other teleosts. Our findings in S. brasiliensis corroborate the heterogeneity in the ontogeny of adenohypophyseal cells in teleosts and suggest a role for adenohypophyseal hormones in the early development of this species.


Asunto(s)
Characidae/embriología , Adenohipófisis/embriología , Animales , Characidae/crecimiento & desarrollo , Organogénesis , Adenohipófisis/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...