Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Gait Posture ; 106: 18-22, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37639960

RESUMEN

BACKGROUND: Individuals with Hereditary Motor and Sensory Neuropathy (HMSN) are commonly provided with orthopedic footwear to improve gait. Although orthopedic footwear has shown to improve walking speed and spatiotemporal parameters, its effect on gait adaptability has not been established. RESEARCH QUESTION: What is the effect of orthopedic footwear on gait adaptability in individuals with HMSN? METHODS: Fifteen individuals with HMSN performed a precision stepping task on an instrumented treadmill projecting visual targets, while wearing either custom-made orthopedic or standardized footwear (i.e. minimally supportive, flexible sneakers). Primary measure of gait adaptability was the absolute Euclidean distance [mm] between the target center and the middle of the foot (absolute error). Secondary outcomes included the relative and variable error [mm] in both anterior-posterior (AP) and medial-lateral (ML) directions. Dynamic balance was assessed by the prediction of ML foot placement based on the ML center of mass position and velocity, using linear regression. Dynamic balance was primarily determined by foot placement deviation in terms of root mean square error. Another aspect of dynamic balance was foot placement adherence in terms of the coefficient of determination (R2). Differences between the footwear conditions were analyzed with a paired t-test or Wilcoxon signed-rank test (α = 0.05). RESULTS: The absolute error, relative error (AP) and variable error (AP and ML) decreased with orthopedic footwear, whereas the relative error in ML-direction slightly increased. As for dynamic balance, no effect on foot placement deviation or adherence was found. SIGNIFICANCE: Gait adaptability improved with orthopedic compared to standardized footwear in people with HMSN, as indicated by improved precision stepping. Dynamic balance, as a possible underlying mechanism, was not affected by orthopedic footwear.

2.
Clin Biomech (Bristol, Avon) ; 94: 105638, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35405625

RESUMEN

BACKGROUND: Orthopedic footwear is often prescribed to improve postural stability during standing and walking in individuals with Hereditary Motor Sensory Neuropathy. However, supporting evidence in literature is scarce. The aim of this study was to investigate the effect of orthopedic footwear on quiet standing balance, gait speed, spatiotemporal parameters, kinematics, kinetics and dynamic balance in individuals with Hereditary Motor Sensory Neuropathy. METHODS: Fifteen individuals with Hereditary Motor Sensory Neuropathy performed a quiet standing task and 2-min walk test on customized orthopedic footwear and standardized footwear. Primary outcome measures were the mean velocity of the center of pressure during quiet standing and gait speed during walking. Secondary outcome measures included center of pressure amplitude and frequency during quiet standing, and spatiotemporal parameters, kinematics, kinetics, and dynamic balance during walking. Two-way repeated measures ANOVA and paired t-tests were performed to identify differences between footwear conditions. FINDINGS: Neither quiet standing balance nor dynamic balance differed between orthopedic and standardized footwear, but orthopedic footwear improved spatiotemporal parameters (higher gait speed, longer step length, shorter step time and smaller step width) during walking. Moreover, less sagittal shank-footwear range of motion, more frontal shank-footwear range of motion, more dorsiflexion of the footwear-to-horizontal angle at initial contact and more hip adduction during the stance phase were found. INTERPRETATION: Orthopedic footwear improved walking in individuals with Hereditary Motor Sensory Neuropathy, whereas it did not affect postural stability during quiet standing or dynamic balance. Especially gait speed and spatiotemporal parameters improved. An improved heel landing at initial contact for all footwear and reduced foot drop during swing for mid and high orthopedic footwear contributed to the gait improvements wearing orthopedic footwear.


Asunto(s)
Zapatos , Caminata , Marcha , Humanos , Aparatos Ortopédicos , Equilibrio Postural
3.
Sensors (Basel) ; 21(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540606

RESUMEN

Previous research showed that an Inertial Measurement Unit (IMU) on the anterior side of the shank can accurately measure the Shank-to-Vertical Angle (SVA), which is a clinically-used parameter to guide tuning of ankle-foot orthoses (AFOs). However, in this context it is specifically important that differences in the SVA are detected during the tuning process, i.e., when adjusting heel height. This study investigated the validity of the SVA as measured by an IMU and its responsiveness to changes in AFO-footwear combination (AFO-FC) heel height in persons with incomplete spinal cord injury (iSCI). Additionally, the effect of heel height on knee flexion-extension angle and internal moment was evaluated. Twelve persons with an iSCI walked with their own AFO-FC in three different conditions: (1) without a heel wedge (refHH), (2) with 5 mm heel wedge (lowHH) and (3) with 10 mm heel wedge (highHH). Walking was recorded by a single IMU on the anterior side of the shank and a 3D gait analysis (3DGA) simultaneously. To estimate validity, a paired t-test and intraclass correlation coefficient (ICC) between the SVAIMU and SVA3DGA were calculated for the refHH. A repeated measures ANOVA was performed to evaluate the differences between the heel heights. A good validity with a mean difference smaller than 1 and an ICC above 0.9 was found for the SVA during midstance phase and at midstance. Significant differences between the heel heights were found for changes in SVAIMU (p = 0.036) and knee moment (p = 0.020) during the midstance phase and in SVAIMU (p = 0.042) and SVA3DGA (p = 0.006) at midstance. Post-hoc analysis revealed a significant difference between the ref and high heel height condition for the SVAIMU (p = 0.005) and knee moment (p = 0.006) during the midstance phase and for the SVAIMU (p = 0.010) and SVA3DGA (p = 0.006) at the instant of midstance. The SVA measured with an IMU is valid and responsive to changing heel heights and equivalent to the gold standard 3DGA. The knee joint angle and knee joint moment showed concomitant changes compared to SVA as a result of changing heel height.


Asunto(s)
Articulación del Tobillo , Ortesis del Pié , Monitoreo Fisiológico , Traumatismos de la Médula Espinal , Tobillo , Fenómenos Biomecánicos , Femenino , Marcha , Talón , Humanos , Pierna , Masculino , Traumatismos de la Médula Espinal/diagnóstico
4.
Front Neurol ; 9: 963, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524356

RESUMEN

Many patients with incomplete spinal cord injury (iSCI) have impaired gait and balance capacity, which may impact daily functioning. Reduced walking speed and impaired gait stability are considered important underlying factors for reduced daily functioning. With conventional therapy, patients are limited in training gait stability, but this can be trained on a treadmill in a virtual environment, such as with the Gait Real-time Analysis Interactive Lab (GRAIL). Our objective was to evaluate the effect of 6-weeks GRAIL-training on gait and dynamic balance in ambulatory iSCI patients. In addition, the long-term effect was assessed. Fifteen patients with chronic iSCI participated. The GRAIL training consisted of 12 one-hour training sessions during a 6-week period. Patients performed 2 minute walking tests on the GRAIL in a self-paced mode at the 2nd, and 3rd (baseline measurements) and at the 12th training session. Ten patients performed an additional measurement after 6 months. The primary outcome was walking speed. Secondary outcomes were stride length, stride frequency, step width, and balance confidence. In addition, biomechanical gait stability measures based on the position of the center of mass (CoM) or the extrapolated center of mass (XCoM) relative to the center of pressure (CoP) or the base of support (BoS) were derived: dynamic stability margin (DSM), XCoM-CoP distance in anterior-posterior (AP) and medial-lateral (ML) directions, and CoM-CoP inclination angles in AP and ML directions. The effect of GRAIL-training was tested with a one-way repeated measures ANOVA (α = 0.05) and post-hoc paired samples t-tests (α = 0.017). Walking speed was higher after GRAIL training (1.04 m/s) compared to both baseline measurements (0.85 and 0.93 m/s) (p < 0.001). Significant improvements were also found for stride length (p < 0.001) and stability measures in AP direction (XCoM-CoPAP (p < 0.001) and CoM-CoPAP-angle (p < 0.001)). Stride frequency (p = 0.27), step width (p = 0.19), and stability measures DSM (p = 0.06), XCoM-CoPML (p = 0.97), and CoM-CoPML-angle (p = 0.69) did not improve. Balance confidence was increased after GRAIL training (p = 0.001). The effects were remained at 6 months. Increased walking speed, stride length, AP gait stability, and balance confidence suggest that GRAIL-training improves gait and dynamic balance in patients with chronic iSCI. In contrast, stability measures in ML direction did not respond to GRAIL-training.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...