Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 998: 37-44, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29153084

RESUMEN

A new experimental setup combining DSC, Raman and Brillouin spectroscopies was developed. In order to estimate its accuracy and stability a study of silicon and the alpha-beta quartz phase transition were performed. The data obtained demonstrated good agreement with previous studies using these three different techniques. For quartz, the temperature behavior of its 147 cm-1 Raman mode was studied in detail. Using a two-phonon coupling treatment of the Raman band, we show for the first time that its behavior can be well described by Landau theory of first-order phase transitions. The combined DSC-Raman-Brillouin technique is a powerful tool for material science capable of studying thermal, structural and elastic properties simultaneously.

2.
J Phys Condens Matter ; 28(31): 315402, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27300313

RESUMEN

In situ micro-Raman spectroscopy was used to investigate the structural evolution of OH(-)-free calcium aluminosilicate glasses, under high pressure and at room temperature. Evaluation was made of the role of the SiO2 concentration in percalcic join systems, for Al/(Al + Si) in the approximate range from 0.9 to 0.2. Under high pressure, the intensity of the main band related to the bending mode of bridging oxygen ([Formula: see text][T-O-T], where T = Si or Al) decreased gradually, suggesting that the bonds were severely altered or even destroyed. In Si-rich glasses, compression induced a transformation of Q (n) species to Q (n-1). In the case of Al-rich glass, the Al in the smallest Q (n) units evolved from tetrahedral to higher-coordinated Al (([5])Al and ([6])Al). Permanent structural changes were observed in samples recovered from the highest pressure of around 15 GPa and, particularly for Si-rich samples, the recovered structure showed an increase of three-membered rings in the Si/Al tetrahedral network.

3.
J Chem Phys ; 139(7): 074501, 2013 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-23968096

RESUMEN

The in situ elastic and plastic behaviors of sodium aluminosilicate glasses with different degrees of depolymerization were analyzed using Brillouin spectroscopy. The observed elastic anomaly progressively vanished with depolymerization. The densification process appears to be different from that observed in pure silica glass. In the plastic regime of densified glasses hysteresis loops were observed and related to modification of the local silicon environment facilitated by the addition of sodium.

4.
J Phys Condens Matter ; 25(2): 025402, 2013 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-23178702

RESUMEN

Raman scattering experiments have been carried out to study persistent densification in SiO(2) glass following hydrostatic compression at room temperature. A new relationship linking selective Raman parameters to the degree of densification in the glass has been developed here. This approach will allow quantification of the residual densification in silica following microindentation experiments, with the goal being the development of a constitutive law for amorphous silica.


Asunto(s)
Vidrio/química , Modelos Químicos , Modelos Moleculares , Dióxido de Silicio/química , Espectrometría Raman/métodos , Fuerza Compresiva , Simulación por Computador , Pruebas de Dureza
5.
J Chem Phys ; 137(12): 124505, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23020341

RESUMEN

The elastic and plastic behaviors of silica glasses densified at various maximum pressure reached (12 GPa, 15 GPa, 19 GPa, and 22 GPa), were analyzed using in situ Raman and Brillouin spectroscopies. The elastic anomaly was observed to progressively vanish up to a maximum pressure reached of 12 GPa, beyond which it is completely suppressed. Above the elastic anomaly the mechanical behavior of silica glass, as derived from Brillouin measurements, is interpreted in terms of pressure induced transformation of low density amorphous silica into high density amorphous silica.

6.
J Chem Phys ; 134(23): 234503, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21702563

RESUMEN

We present low-frequency Raman scattering of pure GeO(2) glass under pressure up to 4 GPa, corresponding to an elastic transformation. Intensity variation and frequency shift of the boson peak are analysed and compared to the Debye model. The decrease of the boson peak intensity scaled by the Debye energy is correlated to the elastic anomalous properties under pressure up to 1.5 GPa, and interpreted as an elastic homogenisation process at the local scale. We emphasize similarities between a-GeO(2) and a-SiO(2) behavior under pressure, and compare our results to other experiments, numerical studies, and predictions of several models concerning amorphous systems.

7.
J Chem Phys ; 134(20): 204502, 2011 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-21639451

RESUMEN

We report on Brillouin and in situ small angle X-ray scattering (SAXS) analyses of topological heterogeneity in compressed sodium borosilicate glasses. SAXS intensity extrapolated to very low angular regimes, I(q = 0), is related to compressibility. From Brillouin scattering and analyses of the elastic properties of the glass, the Landau-Placzek ratio is determined and taken as a direct reflection of the amplitude of frozen-in density fluctuations. It is demonstrated that with increasing fictive pressure, topological (mid- and long-range) homogeneity of the glass increases significantly. Heating and cooling as well as isothermal scans were performed to follow the evolution of density fluctuations upon pressure recovery. For a sample with a fictive pressure p(f) of 470 MPa, complete recovery to p(f) = 0.1 MPa was observed to occur close to the glass transition temperature. The values of fictive and apparent fictive temperature, respectively, as obtained via the intersection method from plots of I(q = 0) vs. temperature were found in good agreement with previous calorimetric analyses. Isothermal scans suggest that mid- and long-range recovery govern macroscopic density relaxation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...