Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 3330, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849550

RESUMEN

The gaining popularity of tobacco and nicotine delivery products, such as electronic cigarettes (e-cigarettes) being perceived as relatively safe is of a medical concern. The long-term safety of these new products remains uncertain for oral health. In this study, in vitro effects of e-liquid were assessed in a panel of normal oral epithelium cell lines (NOE and HMK), oral squamous cell carcinoma (OSCC) human cell lines (CAL27 and HSC3), and a mouse oral cancer cell line (AT84) using cell proliferation, survival/cell death, and cell invasion assays. In addition, signaling pathways underlying the pro-invasive activity of e-cigarettes were evaluated by gene and protein expression analysis. We demonstrated that e-liquid promotes proliferation and anchorage-independent growth of OSCC and induces morphological changes associated with enhanced motility and invasive phenotypes. Furthermore, e-liquid-exposed cells express significantly reduced cell viability, regardless of e-cigarette flavour content. At the gene expression level, e-liquid induces changes in gene expression consistent with epithelial to mesenchymal transition (EMT) revealed by reduced expression of cell epithelial markers such as E-cadherin and enhanced expression of mesenchymal proteins like vimentin and B-catenin seen both in OSCC cell lines and normal oral epithelium cells. In summary, the ability of e-liquid to induce proliferative and invasive properties along the activation of the EMT process can contribute to the development of tumorigenesis in normal epithelial cells and promote aggressive phenotype in pre-existing oral malignant cells.


Asunto(s)
Carcinoma de Células Escamosas , Sistemas Electrónicos de Liberación de Nicotina , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Animales , Ratones , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Transición Epitelial-Mesenquimal , Neoplasias de la Boca/genética , Células Epiteliales
2.
Cells ; 12(1)2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36611933

RESUMEN

Papillary thyroid carcinoma (PTC) is the most common malignancy of the thyroid gland and early stages are curable. However, a subset of PTCs shows an unusually aggressive phenotype with extensive lymph node metastasis and higher incidence of locoregional recurrence. In this study, we investigated a large cohort of PTC cases with an unusual aggressive phenotype using a high-throughput RNA sequencing (RNA-Seq) to identify differentially regulated genes associated with metastatic PTC. All metastatic PTC with mutated BRAF (V600E) but not BRAF wild-type expressed an up-regulation of R-Spondin Protein 4 (RSPO4) concomitant with an upregulation of genes involved in focal adhesion and cell-extracellular matrix signaling. Further immunohistochemistry validation confirmed the upregulation of these target genes in metastatic PTC cases. Preclinical studies using established PTC cell lines support that RSPO4 overexpression is associated with BRAF V600E mutation and is a critical upstream event that promote activation of kinases of focal adhesion signaling known to drive cancer cell locomotion and invasion. This finding opens up the potential of co-targeting B-Raf, RSPO and focal adhesion proteins as a pharmacological approach for aggressive BRAF V600E PTC.


Asunto(s)
Carcinoma Papilar , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/metabolismo , Carcinoma Papilar/genética , Carcinoma Papilar/patología , Mutación/genética , Recurrencia Local de Neoplasia , Proteínas Proto-Oncogénicas B-raf/genética
3.
Int J Biochem Cell Biol ; 134: 105964, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33667680

RESUMEN

Head and neck squamous cell carcinoma (HNSCC), a prevalent cancer worldwide, has a high incidence of loco-regional dissemination, frequent recurrence, and lower 5-year survival rates. Current gold standard treatments for advanced HNSCC rely primarily on radiotherapy and chemotherapy but with limited efficacy and significant side effects. In this study, we characterized a novel 5-fluorouracil (5-FU) carrier composed of chitosan solution (CS) and polycaprolactone (PCL) microparticles (MPs) in HNSCC preclinical models. The designed MPs were evaluated for their size, morphology, drug entrapment efficiency (EE%) and in vitro drug release profile. The anti-cancer activity of 5-FU-loaded particles was assessed in HNSCC human cell lines (CAL27 and HSC3) and in a preclinical mouse model (AT84) utilizing cell proliferation and survival, cell motility, and autophagy endpoints. The results demonstrated a 38.57 % in 5-FU entrapment efficiency associated with reduced 5-FU in vitro release up to 96 h post-exposure. Furthermore, CS-decorated PCL MPs were able to promote a significant inhibition of cancer cell proliferation based on the metabolic and colony formation assays, in comparison to controls. In contrast, CS-decorated PCL MPs did not influence the pharmacological efficacy of 5-FU to inhibit in vitro cancer cell migration. Last, cell protein analysis revealed a significant increase of autophagy and cell death evaluated by LC3-II expression and PARP1 cleavage, respectively. In summary, these results support the potential utility of CS-decorated PCL MPs as an effective 5-FU-delivery carrier to improve HNSCC therapeutic management.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Quitosano/química , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Nanopartículas/administración & dosificación , Poliésteres/química , Animales , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/química , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quitosano/administración & dosificación , Liberación de Fármacos , Fluorouracilo/administración & dosificación , Fluorouracilo/química , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Humanos , Ratones , Nanopartículas/química , Tamaño de la Partícula , Poliésteres/administración & dosificación
4.
Front Bioeng Biotechnol ; 8: 571821, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195132

RESUMEN

The aim of this study was to develop polymeric nanofibers for controlled administration of Amphotericin B (AmpB), using the solution centrifugation technique, characterizing its microstructural and physical properties, release rate, and activity against Leishmania and Candida species. The core-shell nanofibers incorporated with AmpB were synthesized by Solution Blow Spinning (SBS) and characterized by scanning electron microscopy (SEM), differential scanning calorimetry, X-Ray diffraction, and drug release assay. In vitro leishmanicidal and antifungal activity were also evaluated. Fibrous membranes with uniform morphology and smooth surfaces were produced. The intensity of the diffraction peaks becomes slightly more pronounced, assuming the increased crystallization in PLA/PEG at high AmpB loadings. Drug release occurred and the solutions with nanofibers to encourage greater incorporation of AmpB showed a higher concentration. In the results of the experiment with promastigotes, the wells treated with nanofibers containing concentrations of AmpB at 0.25, 0.5, and 1%, did not have any viable cells, similar to the positive control. Various concentrations of AmpB improved the inhibition of fungal growth. The delivery system based on PLA/PEG nanofibers was properly developed for AmpB, presenting a controlled release and a successful encapsulation, as well as antifungal and antileishmanial activity.

5.
Nanomaterials (Basel) ; 10(10)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003387

RESUMEN

Head and neck cancer (HNC) is a complex and heterogeneous disease associated with high mortality and morbidity worldwide. Standard therapeutic management of advanced HNC, which is based on radiotherapy often combined with chemotherapy, has been hampered by severe long-term side effects. To overcome these side effects, tumor-selective nanoparticles have been exploited as a potential drug delivery system to improve HNC therapy. A combination of MEDLINE, EMBASE, Cochrane Oral Health Group's Trials Register, Cochrane Central Register of Controlled Trials (CENTRAL) and ClinicalTrials.gov from inception up to June 2020 was used for this systematic review. A total of 1747 published manuscripts were reviewed and nine relevant references were retrieved for analysis, while eight of them were eligible for meta-analysis. Based on these studies, the level of evidence about the efficacy of nanoformulation for HNC therapy on tumor response and adverse side effects (SAE) was low. Even though basic research studies have revealed a greater promise of nanomaterial to improve the outcome of cancer therapy, none of them were translated into clinical benefits for HNC patients. This systematic review summarized and discussed the recent progress in the development of targeted nanoparticle approaches for HNC management, and open-up new avenues for future perspectives.

6.
Carcinogenesis ; 41(6): 769-777, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32112078

RESUMEN

Regional metastasis is the single most important prognostic factor in oral squamous cell carcinoma (OSCC). Abnormal expression of N-myc downstream-regulated genes (NDRGs) has been identified to occur in several tumor types and to predict poor prognosis. In OSCC, the clinical significance of deregulated NDRG expression has not been fully established. In this study, NDRG1 relevance was assessed at gene and protein levels in 100 OSCC patients followed up by at least 10 years. Survival outcome was analyzed using a multivariable analysis. Tumor progression and metastasis was investigated in preclinical model using oral cancer cell lines (HSC3 and SCC25) treated with epidermal growth factor (EGF) and orthotopic mouse model of metastatic murine OSCC (AT84). We identified NDRG1 expression levels to be significantly lower in patients with metastatic tumors compared with patients with local disease only (P = 0.001). NDRG1 expression was associated with MMP-2, -9, -10 (P = 0.022, P = 0.002, P = 0.042, respectively) and BCL2 (P = 0.035). NDRG1 lower expression was able to predict recurrence and metastasis (log-rank test, P = 0.001). In multivariable analysis, the expression of NDRG1 was an independent prognostic factor (Cox regression, P = 0.013). In invasive OSCC cells, NDRG1 expression is diminished in response to EGF and this was associated with a potent induction of epithelial-mesenchymal transition phenotype. This result was further confirmed in an orthotopic OSCC mouse model. Together, this data support that NDRG1 downregulation is a potential predictor of metastasis and approaches aimed at NDRG1 signaling rescue can serve as potential therapeutic strategy to prevent oral cancer progression to metastasis.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/secundario , Proteínas de Ciclo Celular/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias de la Boca/patología , Recurrencia Local de Neoplasia/patología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proteínas de Ciclo Celular/genética , Proliferación Celular , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Biomed Res Int ; 2019: 3210530, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31309105

RESUMEN

Bioactive glasses (BG) applications include tissue engineering for bone regeneration, coating for implants, and scaffolds for wound healing. BG can be conjugated to ions like silver, which might add some antimicrobial properties to this biomaterial. The immunomodulatory activity of ion-doped bioactive glasses particles was not investigated before. The aim of this work was to evaluate the cytotoxic and immunomodulatory effect of BG and silver-doped bioactive glass (BGAg) in human peripheral blood cells. BG and BGAg samples belonging to the system 58SiO2 •(36-x)CaO·6P2O5 ·xAg2O, where x = 0 and 1 mol%, respectively, were synthesized via sol-gel method and characterized. Cytotoxicity, modulation of cytokine production (TNF-α, IL-1ß, IL-6, IL-4, and IL-10), and oxidative stress response were investigated in human polymorphonuclear cells (PMNs) and peripheral blood mononuclear cells (PBMCs) cultures. Cell viability in the presence of BG or BGAg was concentration-dependent. In addition, BGAg presented higher PBMCs toxicity (LC50 = 0.005%) when compared to BG (LC50 = 0.106%). Interestingly, interleukin4 was produced by PBMCs in response to BG and BGAg in absence of phytohemagglutinin (PHA) and did not modulate PHA-induced cytokine levels. Subtoxic concentrations (0.031% for BG and 0.0008% for BGAg) did not change other cytokines in PBMCs nor reactive oxygen species (ROS) production by PMN. However, BG and BGAg particles decreased zymosan-induced ROS levels in PMN. Although ion incorporation increased BG cytotoxicity, the bioactive glass particles demonstrated a in vitro anti-inflammatory potencial. Future studies are needed to clarify the scavenger potential of the BG/BGAg particles/scaffolds as well as elucidate the effect of the anti-inflammatory potential in modulating tissue growth in vivo.


Asunto(s)
Materiales Biocompatibles/administración & dosificación , Citocinas/metabolismo , Vidrio/química , Leucocitos Mononucleares/metabolismo , Plata/administración & dosificación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Inflamación/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ingeniería de Tejidos/métodos , Cicatrización de Heridas/efectos de los fármacos
8.
Artículo en Inglés | MEDLINE | ID: mdl-30416530

RESUMEN

The present study demonstrates the antifungal potential of chemically characterized essential oil (EO) of Cinnamomum zeylanicum Blume on Candida spp. biofilm and establishes its mode of action, effect on fungal growth kinetics, and cytotoxicity to human cells. The minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) values varied from 62.5 to 1,000 µg/mL, and the effect seems to be due to interference with cell wall biosynthesis. The kinetics assay showed that EO at MICx2 (500 µg/mL) induced a significant (p < 0.05) reduction of the fungal growth after exposure for 8 h. At this concentration, the EO was also able to hinder biofilm formation and reduce Candida spp. monospecies and multispecies in mature biofilm at 24 h and 48 h (p < 0.05). A protective effect on human red blood cells was detected with the EO at concentrations up to 750 µg/mL, as well as an absence of a significant reduction (p > 0.05) in the viability of human red blood cells at concentrations up to 1,000 µg/mL. Phytochemical analysis identified eugenol as the main component (68.96%) of the EO. C. zeylanicum Blume EO shows antifungal activity, action on the yeast cell wall, and a deleterious effect on Candida spp. biofilms. This natural product did not show evidence of cytotoxicity toward human cells.

9.
Biomed Res Int ; 2015: 247965, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25759815

RESUMEN

Chitosan is a polysaccharide composed of randomly distributed chains of ß-(1-4) D-glucosamine and N-acetyl-D-glucosamine. This compound is obtained by partial or total deacetylation of chitin in acidic solution. The chitosan-based hemostatic agents have been gaining much attention in the management of bleeding. The aim of this study was to evaluate in vitro hemagglutination activity of chitosan nanoparticles using human erythrocytes. The preparation of nanoparticles was achieved by ionotropic gelification technique followed by neutralization with NaOH 1 mol/L(-1). The hemagglutination activity was performed on a solution of 2% erythrocytes (pH 7.4 on PBS) collected from five healthy volunteers. The hemolysis determination was made by spectrophotometric analysis. Chitosan nanoparticle solutions without NaOH addition changed the reddish colour of the wells into brown, suggesting an oxidative reaction of hemoglobin and possible cell lysis. All neutralized solutions of chitosan nanoparticles presented positive haemagglutination, without any change in reaction color. Chitosan nanoparticles presented hemolytic activity ranging from 186.20 to 223.12%, while neutralized solutions ranged from 2.56 to 72.54%, comparing to distilled water. Results highlight the need for development of new routes of synthesis of chitosan nanoparticles within human physiologic pH.


Asunto(s)
Quitosano/administración & dosificación , Eritrocitos/efectos de los fármacos , Hemaglutinación/efectos de los fármacos , Nanopartículas/administración & dosificación , Acetilglucosamina/administración & dosificación , Materiales Biocompatibles/administración & dosificación , Quitina/metabolismo , Eritrocitos/metabolismo , Hemólisis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Soluciones/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...