Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666101

RESUMEN

COVID-19 is a disease of dysfunctional immune responses, but the mechanisms triggering immunopathogenesis are not established. The functional plasticity of macrophages allows this cell type to promote pathogen elimination and inflammation or suppress inflammation and promote tissue remodeling and injury repair. During an infection, the clearance of dead and dying cells, a process named efferocytosis, can modulate the interplay between these contrasting functions. Here, we show that engulfment of SARS-CoV-2-infected apoptotic cells exacerbates inflammatory cytokine production, inhibits the expression of efferocytic receptors, and impairs continual efferocytosis by macrophages. We also provide evidence supporting that lung monocytes and macrophages from severe COVID-19 patients have compromised efferocytic capacity. Our findings reveal that dysfunctional efferocytosis of SARS-CoV-2-infected cell corpses suppresses macrophage anti-inflammation and efficient tissue repair programs and provides mechanistic insights for the excessive production of pro-inflammatory cytokines and accumulation of tissue damage associated with COVID-19 immunopathogenesis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antiinflamatorios/farmacología , Apoptosis , Humanos , Macrófagos/metabolismo , Fagocitosis
2.
J Mol Cell Biol ; 14(4)2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35451490

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host.


Asunto(s)
COVID-19 , SARS-CoV-2 , Síndrome de Liberación de Citoquinas , Humanos , Leucocitos Mononucleares , Monocitos
3.
J Exp Med ; 218(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33231615

RESUMEN

Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. The NLRP3 inflammasome is a molecular platform that promotes inflammation via cleavage and activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-1ß, and IL-18. Although participation of the inflammasome in COVID-19 has been highly speculated, the inflammasome activation and participation in the outcome of the disease are unknown. Here we demonstrate that the NLRP3 inflammasome is activated in response to SARS-CoV-2 infection and is active in COVID-19 patients. Studying moderate and severe COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of postmortem patients upon autopsy. Inflammasome-derived products such as Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity, including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are associated with disease severity and poor clinical outcome. Our results suggest that inflammasomes participate in the pathophysiology of the disease, indicating that these platforms might be a marker of disease severity and a potential therapeutic target for COVID-19.


Asunto(s)
COVID-19/patología , COVID-19/virología , Inflamasomas/metabolismo , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad , Apoptosis , Comorbilidad , Citocinas/biosíntesis , Humanos , Pulmón/patología , Monocitos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Cambios Post Mortem , Resultado del Tratamiento
4.
bioRxiv ; 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34013264

RESUMEN

Although SARS-CoV-2 severe infection is associated with a hyperinflammatory state, lymphopenia is an immunological hallmark, and correlates with poor prognosis in COVID-19. However, it remains unknown if circulating human lymphocytes and monocytes are susceptible to SARS-CoV-2 infection. In this study, SARS-CoV-2 infection of human peripheral blood mononuclear cells (PBMCs) was investigated both in vitro and in vivo . We found that in vitro infection of whole PBMCs from healthy donors was productive of virus progeny. Results revealed that monocytes, as well as B and T lymphocytes, are susceptible to SARS-CoV-2 active infection and viral replication was indicated by detection of double-stranded RNA. Moreover, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from COVID-19 patients, and less frequently in CD4 + T lymphocytes. The rates of SARS-CoV-2-infected monocytes in PBMCs from COVID-19 patients increased over time from symptom onset. Additionally, SARS-CoV-2-positive monocytes and B and CD4+T lymphocytes were detected by immunohistochemistry in post mortem lung tissue. SARS-CoV-2 infection of blood circulating leukocytes in COVID-19 patients may have important implications for disease pathogenesis, immune dysfunction, and virus spread within the host.

5.
J Ethnopharmacol ; 252: 112496, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31870795

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Propolis is a natural product produced by honeybees used as a medicine at least to 300 BC. In the last decades, several studies showed biological and pharmacological properties of propolis, witch scientifically explains the empirical use for centuries. The anti-inflammatory activity of propolis with the purpose to reduce Th2 inflammation has been evaluated in allergic asthma. However, it remains to be determined how propolis negatively regulates the immune response after allergen re-exposure. AIM OF THE STUDY: We hypothesized that the anti-inflammatory activity of propolis is dependent on the induction of myeloid derived suppressor cells (MDSC) and regulatory T cells. MATERIALS AND METHODS: To assess this hypothesis, we used an ovalbumin-induced asthma model to evaluate the effect of EPP-AF® dry extract from Brazilian green propolis. RESULTS: Propolis treatment decreased pulmonary inflammation and mucus production as well as eosinophils and IL-5 in the broncoalveolar lavage. Propolis enhanced also in vitro differentiation and in vivo frequency of lung MDSC and CD4+Foxp3+ regulatory T cells. CONCLUSIONS: Together these results confirm the immunomodulatory potential of propolis during sensitization and challenge with allergen. In addition, the collecting findings show, for the first time, that propolis increases the frequency of MDSC and CD4+Foxp3+ regulatory T cells in the lungs, and suggest that it could be use as target for development of new immunotherapy or adjuvant immunotherapy for asthma.


Asunto(s)
Antiinflamatorios/uso terapéutico , Asma/tratamiento farmacológico , Factores Inmunológicos/uso terapéutico , Células Supresoras de Origen Mieloide/efectos de los fármacos , Própolis/uso terapéutico , Linfocitos T Reguladores/efectos de los fármacos , Alérgenos , Animales , Antiinflamatorios/farmacología , Asma/inducido químicamente , Asma/inmunología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Diferenciación Celular/efectos de los fármacos , Femenino , Factores Inmunológicos/farmacología , Inmunoterapia , Interleucina-13/genética , Interleucina-13/inmunología , Interleucina-5/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide/inmunología , Ovalbúmina , Própolis/farmacología , Linfocitos T Reguladores/inmunología , Células Th2/efectos de los fármacos , Células Th2/inmunología
6.
Front Microbiol ; 8: 262, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28280488

RESUMEN

Visceral leishmaniasis (VL) is a chronic and fatal disease caused by Leishmania infantum in Brazil. Leukocyte recruitment to infected tissue is a crucial event for the control of infections such as VL. Among inflammatory cells, neutrophils are recruited to the site of Leishmania infection, and these cells may control parasite replication through oxidative or non-oxidative mechanisms. The recruitment, activation and functions of the neutrophils are coordinated by pro-inflammatory cytokines and chemokines during recognition of the parasite by pattern recognition receptors (PRRs). Here, we demonstrated that the Toll-like receptor 2 (TLR2) signaling pathway contributes to the development of the innate immune response during L. infantum infection. The protective mechanism is related to the appropriate recruitment of neutrophils to the inflammatory site. Neutrophil migration is coordinated by DCs that produce CXCL1 and provide a prototypal Th1 and Th17 environment when activated via TLR2. Furthermore, infected TLR2-/- mice failed to induce nitric oxide synthase (iNOS) expression in neutrophils but not in macrophages. In vitro, infected TLR2-/- neutrophils presented deficient iNOS expression, nitric oxide (NO) and TNF-α production, decreased expression of CD11b and reduced L. infantum uptake capacity. The non-responsive state of neutrophils is associated with increased amounts of IL-10. Taken together, these data clarify new mechanisms by which TLR2 functions in promoting the development of the adaptive immune response and effector mechanisms of neutrophils during L. infantum infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...