Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 165: 80-93, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34034163

RESUMEN

The Coffea arabica HB12 gene (CaHB12), which encodes a transcription factor belonging to the HD-Zip I subfamily, is upregulated under drought, and its constitutive overexpression (35S:CaHB12OX) improves the Arabidopsis thaliana tolerance to drought and salinity stresses. Herein, we generated transgenic cotton events constitutively overexpressing the CaHB12 gene, characterized these events based on their increased tolerance to water deficit, and exploited the gene expression level from the CaHB12 network. The segregating events Ev8.29.1, Ev8.90.1, and Ev23.36.1 showed higher photosynthetic yield and higher water use efficiency under severe water deficit and permanent wilting point conditions compared to wild-type plants. Under well-irrigated conditions, these three promising transformed events showed an equivalent level of Abscisic acid (ABA) and decreased Indole-3-acetic acid (IAA) accumulation, and a higher putrescine/(spermidine + spermine) ratio in leaf tissues was found in the progenies of at least two transgenic cotton events compared to non-transgenic plants. In addition, genes that are considered as modulated in the A. thaliana 35S:CaHB12OX line were also shown to be modulated in several transgenic cotton events maintained under field capacity conditions. The upregulation of GhPP2C and GhSnRK2 in transgenic cotton events maintained under permanent wilting point conditions suggested that CaHB12 might act enhancing the ABA-dependent pathway. All these data confirmed that CaHB12 overexpression improved the tolerance to water deficit, and the transcriptional modulation of genes related to the ABA signaling pathway or downstream genes might enhance the defense responses to drought. The observed decrease in IAA levels indicates that CaHB12 overexpression can prevent leaf abscission in plants under or after stress. Thus, our findings provide new insights on CaHB12 gene and identify several promising cotton events for conducting field trials on water deficit tolerance and agronomic performance.


Asunto(s)
Sequías , Gossypium , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Gossypium/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
RNA Biol ; 18(11): 1653-1681, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33302789

RESUMEN

RNA interference (RNAi)-mediated gene silencing can be used to control specific insect pest populations. Unfortunately, the variable efficiency in the knockdown levels of target genes has narrowed the applicability of this technology to a few species. Here, we examine the current state of knowledge regarding the miRNA (micro RNA) and siRNA (small interfering RNA) pathways in insects and investigate the structural variability at key protein domains of the RNAi machinery. Our goal was to correlate domain variability with mechanisms affecting the gene silencing efficiency. To this end, the protein domains of 168 insect species, encompassing the orders Coleoptera, Diptera, Hemiptera, Hymenoptera, and Lepidoptera, were analysed using our pipeline, which takes advantage of meticulous structure-based sequence alignments. We used phylogenetic inference and the evolutionary rate coefficient (K) to outline the variability across domain regions and surfaces. Our results show that four domains, namely dsrm, Helicase, PAZ and Ribonuclease III, are the main contributors of protein variability in the RNAi machinery across different insect orders. We discuss the potential roles of these domains in regulating RNAi-mediated gene silencing and the role of loop regions in fine-tuning RNAi efficiency. Additionally, we identified several order-specific singularities which indicate that lepidopterans have evolved differently from other insect orders, possibly due to constant coevolution with plants and viruses. In conclusion, our results highlight several variability hotspots that deserve further investigation in order to improve the application of RNAi technology in the control of insect pests.


Asunto(s)
Silenciador del Gen , Proteínas de Insectos/metabolismo , Insectos/clasificación , Insectos/genética , MicroARNs/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Animales , Proteínas de Insectos/genética , Insectos/metabolismo , Filogenia , Dominios Proteicos
3.
Sci Rep ; 10(1): 6991, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332904

RESUMEN

Meloidogyne incognita is a plant-parasitic root-knot nematode (RKN, PPN) responsible for causing damage to several crops worldwide. In Caenorhabditis elegans, the DAF-16 and SKN-1 transcription factors (TFs) orchestrate aging, longevity, and defense responses to several stresses. Here, we report that MiDaf16-like1 and MiSkn1-like1, which are orthologous to DAF-16 and SKN-1 in C. elegans, and some of their targets, are modulated in M. incognita J2 during oxidative stress or plant parasitism. We used RNAi technology for the stable production of siRNAs in planta to downregulate the MiDaf16-like1 and MiSkn1-like1 genes of M. incognita during host plant parasitism. Arabidopsis thaliana and Nicotiana tabacum overexpressing a hairpin-derived dsRNA targeting these genes individually (single-gene silencing) or simultaneously (double-gene silencing) were generated. T2 plants were challenged with M. incognita and the number of eggs, galls, and J2, and the nematode reproduction factor (NRF) were evaluated. Our data indicate that MiDaf16-like1, MiSkn1-like1 and some genes from their networks are modulated in M. incognita J2 during oxidative stress or plant parasitism. Transgenic A. thaliana and N. tabacum plants with single- or double-gene silencing showed significant reductions in the numbers of eggs, J2, and galls, and in NRF. Additionally, the double-gene silencing plants had the highest resistance level. Gene expression assays confirmed the downregulation of the MiDaf16-like1 and MiSkn1-like1 TFs and defense genes in their networks during nematode parasitism in the transgenic plants. All these findings demonstrate that these two TFs are potential targets for the development of biotechnological tools for nematode control and management in economically important crops.


Asunto(s)
Biotecnología/métodos , Tylenchoidea/metabolismo , Tylenchoidea/patogenicidad , Animales , Arabidopsis/parasitología , Enfermedades de las Plantas/parasitología , Plantas Modificadas Genéticamente/parasitología , Interferencia de ARN/fisiología , ARN Bicatenario/genética , Nicotiana/parasitología
4.
Process Biochem ; 70: 45-54, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32288594

RESUMEN

The exploration of emerging host organisms for the economic and efficient production of protein microbicides against HIV is urgently needed in resource-poor areas worldwide. In this study, the production of the novel HIV entry inhibitor candidate, griffithsin (GRFT), was investigated using Nicotiana benthamiana as the expression platform based on a non-viral vector. To increase the yield of recombinant GRFT, the RNA silencing defense mechanism of N. benthamiana was abolished by using three gene silencing suppressors. A transient expression system was used by transferring the GRFT gene, which encodes 122 amino acids, under the control of the enhanced CaMV 35S promoter. The presence of correctly assembled GRFT in transgenic leaves was confirmed using immunoglobulin-specific sandwich ELISA. The data demonstrated that the use of three gene silencing suppressors allowed the highest accumulation of GRFT, with a yield of 400 µg g-1 fresh weight, and this amount was reduced to 287 µg g-1 after purification, representing a recovery of 71.75%. The analysis also showed that the ability of GRFT expressed in N. benthamiana to bind to glycoprotein 120 is close to that of the GRFT protein purified from E. coli. Whole-cell assays using purified GRFT showed that our purified GRFT was potently active against HIV. This study provides the first high-level production of the HIV-1 entry inhibitor griffithsin with a non-viral expression system and illustrates the robustness of the co-agroinfiltration expression system improved through the use of three gene silencing suppressors.

5.
PLoS One ; 10(2): e0118231, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25706301

RESUMEN

Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus), a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB) transcriptome, a number of aminopeptidase N (APN) cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect's biology and to guide the development of new strategies for insect-pest control.


Asunto(s)
Digestión/genética , Perfilación de la Expresión Génica/métodos , Proteínas de Insectos/genética , Lepidópteros/genética , Saccharum/parasitología , Secuencia de Aminoácidos , Animales , Antígenos CD13/genética , Etiquetas de Secuencia Expresada/química , Biblioteca de Genes , Ontología de Genes , Lepidópteros/crecimiento & desarrollo , Lepidópteros/fisiología , Estadios del Ciclo de Vida/genética , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
6.
BMC Genomics ; 15: 854, 2014 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-25280771

RESUMEN

BACKGROUND: Cotton is a major fibre crop grown worldwide that suffers extensive damage from chewing insects, including the cotton boll weevil larvae (Anthonomus grandis). Transcriptome analysis was performed to understand the molecular interactions between Gossypium hirsutum L. and cotton boll weevil larvae. The Illumina HiSeq 2000 platform was used to sequence the transcriptome of cotton flower buds infested with boll weevil larvae. RESULTS: The analysis generated a total of 327,489,418 sequence reads that were aligned to the G. hirsutum reference transcriptome. The total number of expressed genes was over 21,697 per sample with an average length of 1,063 bp. The DEGseq analysis identified 443 differentially expressed genes (DEG) in cotton flower buds infected with boll weevil larvae. Among them, 402 (90.7%) were up-regulated, 41 (9.3%) were down-regulated and 432 (97.5%) were identified as orthologues of A. thaliana genes using Blastx. Mapman analysis of DEG indicated that many genes were involved in the biotic stress response spanning a range of functions, from a gene encoding a receptor-like kinase to genes involved in triggering defensive responses such as MAPK, transcription factors (WRKY and ERF) and signalling by ethylene (ET) and jasmonic acid (JA) hormones. Furthermore, the spatial expression pattern of 32 of the genes responsive to boll weevil larvae feeding was determined by "in situ" qPCR analysis from RNA isolated from two flower structures, the stamen and the carpel, by laser microdissection (LMD). CONCLUSION: A large number of cotton transcripts were significantly altered upon infestation by larvae. Among the changes in gene expression, we highlighted the transcription of receptors/sensors that recognise chitin or insect oral secretions; the altered regulation of transcripts encoding enzymes related to kinase cascades, transcription factors, Ca2+ influxes, and reactive oxygen species; and the modulation of transcripts encoding enzymes from phytohormone signalling pathways. These data will aid in the selection of target genes to genetically engineer cotton to control the cotton boll weevil.


Asunto(s)
Flores/genética , Perfilación de la Expresión Génica/métodos , Gossypium/genética , Herbivoria , Proteínas de Plantas/genética , Gorgojos/fisiología , Animales , Regulación de la Expresión Génica de las Plantas , Gossypium/anatomía & histología , Larva/patogenicidad , Filogenia , Análisis de Secuencia de ARN/métodos , Homología de Secuencia de Ácido Nucleico , Gorgojos/crecimiento & desarrollo
7.
PLoS One ; 8(12): e85079, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24386449

RESUMEN

Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.


Asunto(s)
Proteínas de Insectos/biosíntesis , Interferencia de ARN/fisiología , Transcriptoma/fisiología , Gorgojos/metabolismo , Animales , Gossypium/parasitología , Proteínas de Insectos/genética , Especificidad de la Especie , Gorgojos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...