Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 204: 108127, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37890229

RESUMEN

Enzymes of the sulfur assimilation pathway of plants have been identified as potential targets for herbicide development, given their crucial role in synthesizing amino acids, coenzymes, and various sulfated compounds. In this pathway, O-acetylserine (thiol) lyase (OAS-TL; EC 2.5.1.47) catalyzes the synthesis of L-cysteine through the incorporation of sulfate into O-acetylserine (OAS). This study used an in silico approach to select seven inhibitors for OAS-TL. The in silico experiments revealed that S-benzyl-L-cysteine (SBC) had a better docking score (-7.0 kcal mol-1) than the substrate OAS (-6.6 kcal mol-1), indicating its suitable interaction with the active site of the enzyme. In vitro experiments showed that SBC is a non-competitive inhibitor of OAS-TL from Arabidopsis thaliana expressed heterologously in Escherichia coli, with a Kic of 4.29 mM and a Kiu of 5.12 mM. When added to the nutrient solution, SBC inhibited the growth of maize and morning glory weed plants due to the reduction of L-cysteine synthesis. Remarkably, morning glory was more sensitive than maize. As proof of its mechanism of action, L-cysteine supplementation to the nutrient solution mitigated the inhibitory effect of SBC on the growth of morning glory. Taken together, our data suggest that reduced L-cysteine synthesis is the primary cause of growth inhibition in maize and morning glory plants exposed to SBC. Furthermore, our findings indicate that inhibiting OAS-TL could potentially be a novel approach for herbicidal action.


Asunto(s)
Arabidopsis , Herbicidas , Liasas , Arabidopsis/metabolismo , Cisteína , Cisteína Sintasa/metabolismo , Herbicidas/farmacología , Plantas/metabolismo , Compuestos de Sulfhidrilo/metabolismo
2.
Appl Biochem Biotechnol ; 192(1): 257-282, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32378080

RESUMEN

A new cellulase producer strain of Penicillium digitatum (RV 06) was previously obtained from rotten maize grains. This work aim was to optimize the production and characterize this microorganism produced cellulase. A CMCase maximum production (1.6 U/mL) was obtained in stationary liquid culture, with an initial pH of 5.0, at 25 °C, with 1% lactose as carbon source, and cultured for 5 days. The produced enzyme was purified by ammonium sulfate precipitation and exclusion chromatography. The purified enzyme optimal temperature and pH were 60 °C and 5.2, respectively. The experimental Tm of thermal inactivation was 63.68 °C, and full activity was recovered after incubation of 7 h at 50 °C. The purified 74 kDa CMCase presented KM for CMC of 11.2 mg/mL, Vmax of 0.13 µmol/min, kcat of 52 s-1, and kcat/KM of 4.7 (mg/mL)-1 s-1. The purified enzyme had a high specificity for CMC and p-nitrophenyl cellobioside and released glucose and cellobiose as final products of the CMC hydrolysis. The enzyme trypsin digestion produced peptides whose masses were obtained by MALDI-TOF/TOF mass spectrometry, which was also used to obtain two peptide sequences. These peptide sequences and the mass peak profile retrieved a CBHI within the annotated genome of P. digitatum PD1. Sequence alignments and phylogenetic analysis confirmed this enzyme as a CBHI of the glycoside hydrolase family 7. The P. digitatum PD1 protein in silico structural model revealed a coil and ß-conformation predominance, which was confirmed by circular dichroism of the P. digitatum RV 06 purified enzyme.


Asunto(s)
Celobiosa/metabolismo , Celulasa/biosíntesis , Celulosa 1,4-beta-Celobiosidasa/biosíntesis , Celulosa 1,4-beta-Celobiosidasa/aislamiento & purificación , Proteínas Fúngicas/biosíntesis , Penicillium/enzimología , Dicroismo Circular , Estabilidad de Enzimas , Genoma Fúngico , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Filogenia , Sensibilidad y Especificidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato , Temperatura
3.
Mol Biotechnol ; 61(9): 633-649, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31177409

RESUMEN

Galactose oxidase catalyzes a two-electron oxidation, mainly from the C6 hydroxyl group of D-galactose, with the concomitant reduction of water to hydrogen peroxide. This enzyme is secreted by Fusarium species and has several biotechnological applications. In this study, a screening of galactose oxidase production among species of the Fusarium fujikuroi species complex demonstrated Fusarium subglutinans to be the main producer. The truncated F. subglutinans gaoA gene coding for the mature galactose oxidase was expressed from the prokaryotic vector pTrcHis2B in the E. coli Rosetta™ (DE3) strain. The purified recombinant enzyme presented temperature and pH optima of 30 °C and 7.0, respectively, KM of 132.6 ± 18.18 mM, Vmax of 3.2 ± 0.18 µmol of H2O2/min, kcat of 12,243 s-1, and a catalytic efficiency (kcat/KM) of 9.2 × 104 M-1 s-1. In the presence of 50% glycerol, the enzyme showed a T50 of 59.77 °C and was stable for several hours at pH 8.0 and 4 °C. Besides D-(+)-galactose, the purified enzyme also acted against D-(+)-raffinose, α-D-(+)-melibiose, and methyl-α-D-galactopyranoside, and was strongly inhibited by SDS. Although the F. subglutinans gaoA gene was successfully expressed in E. coli, its endogenous transcription was not confirmed by RT-PCR.


Asunto(s)
Fusarium/enzimología , Galactosa Oxidasa/metabolismo , Galactosa/química , Proteínas Recombinantes/metabolismo , Secuencia de Aminoácidos , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Fusarium/química , Galactosa/metabolismo , Galactosa Oxidasa/química , Galactosa Oxidasa/genética , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Concentración de Iones de Hidrógeno , Melibiosa/química , Melibiosa/metabolismo , Metilgalactósidos/química , Metilgalactósidos/metabolismo , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Rafinosa/química , Rafinosa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Temperatura
4.
Food Chem ; 275: 346-353, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30724206

RESUMEN

Tannins are compounds with antinutrient properties that hinder food digestibility, prejudicing human and animal nutrition. This work aimed to evaluate the negative effects of tannic acid on Kluyveromyces lactis ß-galactosidase catalytic activity and correlate these changes with the protein structure. ß-Galactosidase activity decreased in the presence of tannins, which caused changes to the structure of the enzyme, as demonstrated by circular dichroism. It was verified that tannin binds to the protein by a static mechanism. Additionally, isothermal titration calorimetry suggested that tannic acid modified the molecular interaction between ß-galactosidase and o-nitrophenyl-ß-d-galactoside, reducing their affinity and prejudicing the protein activity. This study helps to understand the effects of tannins on the ß-galactosidase structure and how they are related to the enzyme catalytic activity. The alterations in the conformation and activity of the enzyme should be taken into consideration when dairy products are consumed with tannin-rich food.


Asunto(s)
Kluyveromyces/enzimología , Taninos/metabolismo , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , Animales , Calorimetría/métodos , Dicroismo Circular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Cinética , Nitrofenilgalactósidos/química , Nitrofenilgalactósidos/metabolismo , Conformación Proteica , Espectrometría de Fluorescencia , Taninos/química , Termodinámica
5.
J Food Sci Technol ; 54(1): 236-243, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28242921

RESUMEN

Freezing is a widely applied method in food preservation. The technique has negative effects on sensory and textural properties of some foods. In this study the effects of the freeze-thaw process and lactobionic acid (LBA) as a cryoprotectant on GlnK protein solution were evaluated by circular dichroism (CD) analysis and isothermal titration calorimetry (ITC). The freeze-thaw cycles caused changes in GlnK conformation and interactions with small ligands (adenosine triphosphate, ATP). CD assay demonstrated changes in the molar ellipticity values of the samples subjected to freezing, indicating conformational changes to the GlnK protein. Additionally, ITC analysis indicated that the freeze-thaw process caused changes in the interaction properties of GlnK with its ligand ATP. LBA cryoprotectant activity was also evaluated and with both of the techniques it was demonstrated that the compound prevented the damage caused by the freeze-thaw process, thereby maintaining the characteristics of the samples.

6.
Biochim Biophys Acta ; 1824(2): 359-65, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22154803

RESUMEN

The RNA chaperone Hfq is a homohexamer protein identified as an E. coli host factor involved in phage Qß replication and it is an important posttranscriptional regulator of several types of RNA, affecting a plethora of bacterial functions. Although twenty Hfq crystal structures have already been reported in the Protein Data Bank (PDB), new insights into these protein structures can still be discussed. In this work, the structure of Hfq from the ß-proteobacterium Herbaspirillum seropedicae, a diazotroph associated with economically important agricultural crops, was determined by X-ray crystallography and small-angle X-ray scattering (SAXS). Biochemical assays such as exclusion chromatography and RNA-binding by the electrophoretic shift assay (EMSA) confirmed that the purified protein is homogeneous and active. The crystal structure revealed a conserved Sm topology, composed of one N-terminal α-helix followed by five twisted ß-strands, and a novel π-π stacking intra-subunit interaction of two histidine residues, absent in other Hfq proteins. Moreover, the calculated ab initio envelope based on small-angle X-ray scattering (SAXS) data agreed with the Hfq crystal structure, suggesting that the protein has the same folding structure in solution.


Asunto(s)
Herbaspirillum/química , Proteína de Factor 1 del Huésped/química , Chaperonas Moleculares/química , Secuencia de Aminoácidos , Cromatografía en Gel , Cristalografía por Rayos X , Ensayo de Cambio de Movilidad Electroforética , Histidina/química , Proteína de Factor 1 del Huésped/genética , Modelos Moleculares , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Terciaria de Proteína , ARN/química , ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Dispersión del Ángulo Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...