Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 78(11): 4544-4556, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35821565

RESUMEN

BACKGROUND: The egg-parasitoid wasp Telenomus podisi has received attention as a biological-control agent for one of the most important soybean pests in Brazil, the stink bug Euschistus heros. As yet, no studies have conclusively established strategies for the release of T. podisi. We developed a computational model using cellular automata in the C programming language to investigate release strategies for T. podisi in soybean crops, in order to optimize the use of these wasps in managing E. heros, assuming a two-dimensional grid of cells corresponding to a soybean field. RESULTS: The release strategies capable of maintaining an E. heros population below the Economic Threshold level involved releasing a total of at least 15 000 female parasitoids per hectare, in three or four releases of 5000 or more (equivalent to approximately 7142 or more male and female parasitoids per hectare, assuming a sex ratio of 0.70). A 25-m spacing between release points or strips was indicated. The model is very sensitive to the variation in the number of parasitoids per release and in the number of releases, but little sensitive to the release mode and spacing values. CONCLUSION: The theoretical results produced by the computational model are expected to guide future field studies to improve T. podisi release plans for managing E. heros in soybeans. Therefore, we recommend the release strategy of three to four releases of 5000 or more female parasitoids per hectare, at points or strips spaced 25 m apart, to be tested in field experiments for proper implementation by producers. © 2022 Society of Chemical Industry.


Asunto(s)
Heterópteros , Avispas , Animales , Agentes de Control Biológico , Simulación por Computador , Femenino , Masculino , Glycine max
2.
Insects ; 12(12)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34940193

RESUMEN

Infestation by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes damage to tomatoes with production losses of up to 100%, affecting the physiological and biochemical aspects of host plants. The objective of this study was to analyze the influence of infestation of cryptic species of B. tabaci MED and MEAM1 on the physiological and biochemical aspects of tomato. Tomato plants 'Santa Adélia Super' infested with B. tabaci (MED and MEAM1), and non-infested plants were evaluated for differences in gas exchange, chlorophyll - a fluorescence of photosystem II (PSII), and biochemical factors (total phenols, total flavonoids, superoxide dismutase-SOD, peroxidase-POD, and polyphenol oxidase-PPO). Plants infested with B. tabaci MED showed low rates of CO2 assimilation and stomatal conductance of 55% and 52%, respectively. The instantaneous carboxylation efficiency was reduced by 40% in MED and by 60% in MEAM1 compared to the control. Regarding biochemical aspects, plants infested by MED cryptic species showed high activity of POD and PPO enzymes and total phenol content during the second and third instars when compared to control plants. Our results indicate that B. tabaci MED infestation in tomato plants had a greater influence than B. tabaci MEAM1 infestation on physiological parameters (CO2 assimilation rate (A), stomatal conductance (gs), and apparent carboxylation efficiency (A/Ci)) and caused increased activity of POD and PPO enzymes, indicating plant resistance to attack. In contrast, B. tabaci MEAM1 caused a reduction in POD enzyme activity, favoring offspring performance.

3.
Mater Sci Eng C Mater Biol Appl ; 111: 110765, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32279798

RESUMEN

Crystal morphology with different surfaces is important for improving the antibacterial activity of materials. In this experimental and theoretical study, the antibacterial activity of ß-Ag2MoO4 microcrystals against the Gram-positive bacteria, namely, methicillin-resistant Staphylococcus aureus (MRSA), and the Gram-negative bacteria, namely, Escherichia coli (E. coli), was investigated. In this study, ß-Ag2MoO4 crystals with different morphologies were synthetized by a simple co-precipitation method using three different solvents. The antimicrobial efficacy of the obtained microcrystals against both bacteria increased according to the solvent used in the following order: water < ammonia < ethanol. Supported by experimental evidence, a correlation between morphology, surface energy, and antibacterial performance was established. By using the theoretical Wulff construction, which was obtained by means of density functional calculations, the morphologies with large exposition of the (001) surface exhibited superior antibacterial activity. This study provides a low cost route for synthesizing ß-Ag2MoO4 crystals and a guideline for enhancing the biological effect of biocides on pathogenic bacteria by the morphological modulation.


Asunto(s)
Antibacterianos/química , Molibdeno/química , Antibacterianos/farmacología , Teoría Funcional de la Densidad , Escherichia coli/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier
4.
Mater Sci Eng C Mater Biol Appl ; 108: 110405, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31923947

RESUMEN

The number of studies on microcrystals containing silver has increased in recent decades. Among the silver-containing microcrystals, α-AgVO3 has gained prominence owing to its polymorphism that allows it to exert interesting antimicrobial activity against pathogenic microorganisms. The aim of this study was to evaluate the antifungal activity and cytotoxicity of three different α-AgVO3 microcrystals when in solution. α-AgVO3 microcrystals were synthesized using the co-precipitation method at three different temperatures (10 °C, 20 °C, and 30 °C), and then characterized by X-ray diffraction and scanning electron microscopy. The antifungal activity of α-AgVO3 microcrystals against Candida albicans was determined by estimating the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC). Fluorescence images were obtained to confirm antifungal concentrations. To assess the biocompatibility of microcrystals applied at MIC and MFC on keratinocytes cells (NOK-si), an Alamar Blue assay, scanning electron microscopy, and a DNA gel integrity test were carried out. The quantitative and qualitative results showed that, regardless of the co-precipitation method used to synthetize α-AgVO3 microcrystals, C. albicans growth was visibly inhibited at 3.9 µg/mL (MIC) and completely inhibited at 15.62 µg/mL (MFC). The cytotoxic and genotoxic outcomes revealed that the MIC and MFC concentrations did not affect NOK-si cell morphology, proliferation, or DNA integrity. The search for new antimicrobial materials has been the focus of the research community recently because of increases in microbial resistance. The findings reported herein demonstrate a novel antifungal and non-cytotoxic material that could be used in biomedical and dental applications.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Óxidos/farmacología , Compuestos de Plata/farmacología , Compuestos de Vanadio/farmacología , Antifúngicos/efectos adversos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Pruebas de Sensibilidad Microbiana , Microscopía Fluorescente , Óxidos/efectos adversos , Compuestos de Plata/efectos adversos , Compuestos de Vanadio/efectos adversos
5.
Inorg Chem ; 57(24): 15489-15499, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30495933

RESUMEN

In this paper, we present a combined experimental and theoretical study to disclose, for the first time, the structural, electronic, and optical properties of Ca10V6O25 crystals. The microwave-assisted hydrothermal (MAH) method has been employed to synthesize these crystals with different morphologies, within a short reaction time at 120 °C. First-principle quantum mechanical calculations have been performed at the density functional theory level to obtain the geometry and electronic properties of Ca10V6O25 crystal in the fundamental and excited electronic states (singlet and triplet). These results, combined with the measurements of X-ray diffraction (XRD) and Rietveld refinements, confirm that the building blocks lattice of the Ca10V6O25 crystals consist of three types of distorted 6-fold coordination [CaO6] clusters: octahedral, prism and pentagonal pyramidal, and distorted tetrahedral [VO4] clusters. Theoretical and experimental results on the structure and vibrational frequencies are in agreement. Thus, it was possible to assign the Raman modes for the Ca10V6O25 superstructure, which will allow us to show the structure of the unit cell of the material, as well as the coordination of the Ca and V atoms. This also allowed us to understand the charge transfer process that happens in the singlet state (s) and the excited states, singlet (s*) and triplet (t*), generating the photoluminescence emissions of the Ca10V6O25 crystals.

6.
Colloids Surf B Biointerfaces ; 170: 505-513, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29960951

RESUMEN

Silver tungstate (α-Ag2WO4) microcrystals have shown encouraging results regarding their antimicrobial activity. However, in addition to the promising outcomes in fighting oral disease, cytotoxic tests are mandatory for screening new materials for biological applications. Here, we developed a better understanding of the effects of microcrystals on the behavior of both human gingival fibroblast (HGF) cells and three-dimensional (3D) collagen matrices. To perform these experiments, the lowest concentration of α-Ag2WO4 capable of preventing the visible growth of Candida albicans (C. albicans) planktonic cells was defined as the test concentration, and it ranged from 0.781 (C1) to 7.81 (C2) to 78.1 (C3) µg/mL. Complete medium and lysis buffer (LB) served as negative (C-) and positive (C+) controls, respectively. The effect of the microcrystal concentration on the morphology, remodeling and proliferation of HGF cells was evaluated by different approaches. Quantitative and qualitative assessments demonstrated that α-Ag2WO4 did not affect the mitochondrial enzymatic activity of HGF cells cultured in a monolayer or the cell viability within 3D collagen matrices. These experiments showed that α-Ag2WO4 at the C2 concentration did not damage the genomic DNA. The development of new materials is attractive for the possible treatment of diseases and for avoiding indiscriminate prescribing of antibiotics. These findings provide information on the effect of α-Ag2WO4 on cell behavior and reveal that these microcrystals are non-cytotoxic against human gingival cells over a sufficient period to measure the hazard potential.


Asunto(s)
Colágeno/química , Fibroblastos/efectos de los fármacos , Gingivitis/tratamiento farmacológico , Nanopartículas del Metal/química , Plata/farmacología , Compuestos de Tungsteno/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Encía/citología , Encía/microbiología , Gingivitis/microbiología , Gingivitis/patología , Humanos , Modelos Moleculares , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo , Plata/química , Plata/uso terapéutico , Propiedades de Superficie , Compuestos de Tungsteno/química , Compuestos de Tungsteno/uso terapéutico
7.
ACS Appl Mater Interfaces ; 9(13): 11472-11481, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28291327

RESUMEN

The electronic configuration, morphology, optical features, and antibacterial activity of metastable α-AgVO3 crystals have been discussed by a conciliation and association of the results acquired by experimental procedures and first-principles calculations. The α-AgVO3 powders were synthesized using a coprecipitation method at 10, 20, and 30 °C. By using a Wulff construction for all relevant low-index surfaces [(100), (010), (001), (110), (011), (101), and (111)], the fine-tuning of the desired morphologies can be achieved by controlling the values of the surface energies, thereby lending a microscopic understanding to the experimental results. The as-synthesized α-AgVO3 crystals display a high antibacterial activity against methicillin-resistant Staphylococcus aureus. The results obtained from the experimental and theoretical techniques allow us to propose a mechanism for understanding the relationship between the morphological changes and antimicrobial performance of α-AgVO3.


Asunto(s)
Antibacterianos/farmacología , Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Óxidos , Compuestos de Plata , Compuestos de Vanadio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA